We show the maximality of subfields as cliques in a special family of Cayley graphs defined on the additive group of a finite field. In particular, this confirms a conjecture of Yip on generalized Paley graphs.
Revised:
Accepted:
Published online:
Keywords: Cayley graph, maximal clique, character sum
Yip, Chi Hoi 1
@article{ALCO_2023__6_4_901_0, author = {Yip, Chi Hoi}, title = {Maximality of subfields as cliques in {Cayley} graphs over finite fields}, journal = {Algebraic Combinatorics}, pages = {901--905}, publisher = {The Combinatorics Consortium}, volume = {6}, number = {4}, year = {2023}, doi = {10.5802/alco.291}, language = {en}, url = {https://alco.centre-mersenne.org/articles/10.5802/alco.291/} }
TY - JOUR AU - Yip, Chi Hoi TI - Maximality of subfields as cliques in Cayley graphs over finite fields JO - Algebraic Combinatorics PY - 2023 SP - 901 EP - 905 VL - 6 IS - 4 PB - The Combinatorics Consortium UR - https://alco.centre-mersenne.org/articles/10.5802/alco.291/ DO - 10.5802/alco.291 LA - en ID - ALCO_2023__6_4_901_0 ER -
%0 Journal Article %A Yip, Chi Hoi %T Maximality of subfields as cliques in Cayley graphs over finite fields %J Algebraic Combinatorics %D 2023 %P 901-905 %V 6 %N 4 %I The Combinatorics Consortium %U https://alco.centre-mersenne.org/articles/10.5802/alco.291/ %R 10.5802/alco.291 %G en %F ALCO_2023__6_4_901_0
Yip, Chi Hoi. Maximality of subfields as cliques in Cayley graphs over finite fields. Algebraic Combinatorics, Volume 6 (2023) no. 4, pp. 901-905. doi : 10.5802/alco.291. https://alco.centre-mersenne.org/articles/10.5802/alco.291/
[1] Van Lint–MacWilliams’ conjecture and maximum cliques in Cayley graphs over finite fields, J. Combin. Theory Ser. A, Volume 192 (2022), Paper no. 105667, 23 pages | MR | Zbl
[2] On subsets of with square differences, Nederl. Akad. Wetensch. Indag. Math., Volume 46 (1984) no. 4, pp. 369-372 | DOI | MR | Zbl
[3] The clique numbers and chromatic numbers of certain Paley graphs, Quaestiones Math., Volume 11 (1988) no. 1, pp. 91-93 | DOI | MR | Zbl
[4] Clique numbers of Paley graphs, Quaestiones Math., Volume 11 (1988) no. 2, pp. 225-231 | DOI | MR | Zbl
[5] Open problems in additive combinatorics, Additive combinatorics (CRM Proc. Lecture Notes), Volume 43, Amer. Math. Soc., Providence, RI, 2007, pp. 207-233 | DOI | MR | Zbl
[6] Counting sets with small sumset, and the clique number of random Cayley graphs, Combinatorica, Volume 25 (2005) no. 3, pp. 307-326 | DOI | MR | Zbl
[7] An estimate for character sums, J. Amer. Math. Soc., Volume 2 (1989) no. 2, pp. 197-200 | DOI | MR | Zbl
[8] Finite fields, Encyclopedia of Mathematics and its Applications, 20, Cambridge University Press, Cambridge, 1997, xiv+755 pages (With a foreword by P. M. Cohn)
[9] Self-complementary arc-transitive graphs and their imposters (2009) https://uwspace.uwaterloo.ca/handle/10012/4264 (Master’s thesis, University of Waterloo)
[10] All self-complementary symmetric graphs, J. Algebra, Volume 240 (2001) no. 1, pp. 209-229 | DOI | MR | Zbl
[11] Gauss sums and the maximum cliques in generalized Paley graphs of square order, Funct. Approx. Comment. Math., Volume 66 (2022) no. 1, pp. 119-138 | MR | Zbl
[12] On maximal cliques of Cayley graphs over fields, J. Algebraic Combin., Volume 56 (2022) no. 2, pp. 323-333 | MR | Zbl
Cited by Sources: