Let be a rational prime. We show that an analogue of a conjecture of Greenberg in graph theory holds true. More precisely, we show that when is sufficiently large, the -adic valuation of the number of spanning trees at the th layer of a -tower of graphs is given by a polynomial in and with rational coefficients of total degree at most and of degree in at most one.
Revised:
Accepted:
Published online:
Keywords: Ihara zeta functions, Iwasawa theory, spanning trees
DuBose, Sage 1; Vallières, Daniel 1
@article{ALCO_2023__6_5_1331_0, author = {DuBose, Sage and Valli\`eres, Daniel}, title = {On $\mathbb{Z}_{\ell }^{d}$-towers of graphs}, journal = {Algebraic Combinatorics}, pages = {1331--1346}, publisher = {The Combinatorics Consortium}, volume = {6}, number = {5}, year = {2023}, doi = {10.5802/alco.304}, language = {en}, url = {https://alco.centre-mersenne.org/articles/10.5802/alco.304/} }
TY - JOUR AU - DuBose, Sage AU - Vallières, Daniel TI - On $\mathbb{Z}_{\ell }^{d}$-towers of graphs JO - Algebraic Combinatorics PY - 2023 SP - 1331 EP - 1346 VL - 6 IS - 5 PB - The Combinatorics Consortium UR - https://alco.centre-mersenne.org/articles/10.5802/alco.304/ DO - 10.5802/alco.304 LA - en ID - ALCO_2023__6_5_1331_0 ER -
%0 Journal Article %A DuBose, Sage %A Vallières, Daniel %T On $\mathbb{Z}_{\ell }^{d}$-towers of graphs %J Algebraic Combinatorics %D 2023 %P 1331-1346 %V 6 %N 5 %I The Combinatorics Consortium %U https://alco.centre-mersenne.org/articles/10.5802/alco.304/ %R 10.5802/alco.304 %G en %F ALCO_2023__6_5_1331_0
DuBose, Sage; Vallières, Daniel. On $\mathbb{Z}_{\ell }^{d}$-towers of graphs. Algebraic Combinatorics, Volume 6 (2023) no. 5, pp. 1331-1346. doi : 10.5802/alco.304. https://alco.centre-mersenne.org/articles/10.5802/alco.304/
[1] Class numbers in -extensions, Math. Ann., Volume 255 (1981) no. 2, pp. 235-258 | DOI | MR | Zbl
[2] On geometric -extensions of function fields, Manuscripta Math., Volume 62 (1988) no. 2, pp. 145-161 | DOI | MR | Zbl
[3] Jacobians of Finite and Infinite Voltage Covers of Graphs. Thesis (Ph.D.)–The University of Vermont and State Agricultural College, ProQuest LLC, Ann Arbor, MI, 2021, 266 pages | MR
[4] Iwasawa theory of Jacobians of graphs, Algebr. Comb., Volume 5 (2022) no. 5, pp. 827-848 | MR | Zbl
[5] Generating all graph coverings by permutation voltage assignments, Discrete Math., Volume 18 (1977) no. 3, pp. 273-283 | DOI | MR | Zbl
[6] Topological graph theory, Dover Publications, Inc., Mineola, NY, 2001, xvi+361 pages | MR
[7] On zeta and -functions of finite graphs, Internat. J. Math., Volume 1 (1990) no. 4, pp. 381-396 | DOI | MR | Zbl
[8] On discrete subgroups of the two by two projective linear group over -adic fields, J. Math. Soc. Japan, Volume 18 (1966), pp. 219-235 | DOI | MR | Zbl
[9] On -extensions of algebraic number fields, Ann. of Math. (2), Volume 98 (1973), pp. 246-326 | DOI | MR | Zbl
[10] Generalised Iwasawa invariants and the growth of class numbers, Forum Math., Volume 33 (2021) no. 1, pp. 109-127 | DOI | MR | Zbl
[11] The non--part of the number of spanning trees in abelian -towers of multigraphs, Res. Number Theory, Volume 9 (2023) no. 1, Paper no. 18, 16 pages | DOI | MR | Zbl
[12] On abelian -towers of multigraphs II, Ann. Math. Qué., Volume 47 (2023) no. 2, pp. 461-473 | DOI | MR | Zbl
[13] On abelian -towers of multigraphs III, To appear in Annales Mathématiques du Québec (2022)
[14] On -adic power series, Math. Ann., Volume 255 (1981) no. 2, pp. 217-227 | DOI | MR | Zbl
[15] Class numbers in -extensions. II, Math. Z., Volume 191 (1986) no. 3, pp. 377-395 | DOI | MR
[16] Class numbers in -extensions. III, Math. Z., Volume 193 (1986) no. 4, pp. 491-514 | DOI | MR | Zbl
[17] Class numbers in -extensions. IV, Math. Z., Volume 196 (1987) no. 4, pp. 547-572 | DOI | MR | Zbl
[18] Fine estimates for the growth of in -extensions, Algebraic number theory (Adv. Stud. Pure Math.), Volume 17, Academic Press, Boston, MA, 1989, pp. 309-330 | DOI | MR
[19] Algebraic number theory. Translated from the 1992 German original and with a note by Norbert Schappacher, With a foreword by G. Harder, Grundlehren der Mathematischen Wissenschaften, 322, Springer-Verlag, Berlin, 1999, xviii+571 pages | DOI | MR
[20] Cohomology of number fields, Grundlehren der Mathematischen Wissenschaften, 323, Springer-Verlag, Berlin, 2008, xvi+825 pages | DOI | MR
[21] A note on the zeta function of a graph, J. Combin. Theory Ser. B, Volume 74 (1998) no. 2, pp. 408-410 | DOI | MR | Zbl
[22] Arbres, amalgames, . Avec un sommaire anglais, Rédigé avec la collaboration de Hyman Bass, Astérisque, 46, Société Mathématique de France, Paris, 1977, 189 pp. (1 plate) pages | MR
[23] Zeta functions of finite graphs and coverings, Adv. Math., Volume 121 (1996) no. 1, pp. 124-165 | DOI | MR | Zbl
[24] Zeta functions of finite graphs and coverings. II, Adv. Math., Volume 154 (2000) no. 1, pp. 132-195 | DOI | MR | Zbl
[25] -functions in geometry and some applications, Curvature and topology of Riemannian manifolds (Katata, 1985) (Lecture Notes in Math.), Volume 1201, Springer, Berlin, 1986, pp. 266-284 | DOI | MR | Zbl
[26] Topological crystallography.With a view towards discrete geometric analysis, Surveys and Tutorials in the Applied Mathematical Sciences, 6, Springer, Tokyo, 2013, xii+229 pages | DOI | MR
[27] Zeta functions of graphs. A stroll through the garden, Cambridge Studies in Advanced Mathematics, 128, Cambridge University Press, Cambridge, 2011, xii+239 pages | MR
[28] SageMath, the Sage Mathematics Software System (Version 8.5) (2018) (https://www.sagemath.org)
[29] On abelian -towers of multigraphs, Ann. Math. Qué., Volume 45 (2021) no. 2, pp. 433-452 | DOI | MR | Zbl
[30] Class numbers and -ranks in -towers, J. Number Theory, Volume 203 (2019), pp. 139-154 | DOI | MR | Zbl
Cited by Sources: