Cyclic independence: Boolean and monotone
Algebraic Combinatorics, Volume 6 (2023) no. 6, pp. 1697-1734.

The present paper introduces a modified version of cyclic-monotone independence which originally arose in the context of random matrices, and also introduces its natural analogy called cyclic-Boolean independence. We investigate formulas for convolutions, limit theorems for sums of independent random variables, and also classify infinitely divisible distributions with respect to cyclic-Boolean convolution. Finally, we provide applications to the eigenvalues of the adjacency matrices of iterated star products of graphs and also iterated comb products of graphs.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/alco.309
Classification: 46L54, 05C76
Keywords: Boolean independence, monotone independence, star product, comb product

Arizmendi, Octavio 1; Hasebe, Takahiro 2; Lehner, Franz 3

1 Centro de Investigación en Matemáticas. Calle Jalisco SN. Guanajuato, Mexico
2 Department of Mathematics, Hokkaido University, North 10 West 8, Kita-Ku, Sapporo 060-0810, Japan.
3 Institut für Diskrete Mathematik, Technische Universität Graz Steyrergasse 30, 8010 Graz, Austria
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{ALCO_2023__6_6_1697_0,
     author = {Arizmendi, Octavio and Hasebe, Takahiro and Lehner, Franz},
     title = {Cyclic independence: {Boolean} and monotone},
     journal = {Algebraic Combinatorics},
     pages = {1697--1734},
     publisher = {The Combinatorics Consortium},
     volume = {6},
     number = {6},
     year = {2023},
     doi = {10.5802/alco.309},
     language = {en},
     url = {https://alco.centre-mersenne.org/articles/10.5802/alco.309/}
}
TY  - JOUR
AU  - Arizmendi, Octavio
AU  - Hasebe, Takahiro
AU  - Lehner, Franz
TI  - Cyclic independence: Boolean and monotone
JO  - Algebraic Combinatorics
PY  - 2023
SP  - 1697
EP  - 1734
VL  - 6
IS  - 6
PB  - The Combinatorics Consortium
UR  - https://alco.centre-mersenne.org/articles/10.5802/alco.309/
DO  - 10.5802/alco.309
LA  - en
ID  - ALCO_2023__6_6_1697_0
ER  - 
%0 Journal Article
%A Arizmendi, Octavio
%A Hasebe, Takahiro
%A Lehner, Franz
%T Cyclic independence: Boolean and monotone
%J Algebraic Combinatorics
%D 2023
%P 1697-1734
%V 6
%N 6
%I The Combinatorics Consortium
%U https://alco.centre-mersenne.org/articles/10.5802/alco.309/
%R 10.5802/alco.309
%G en
%F ALCO_2023__6_6_1697_0
Arizmendi, Octavio; Hasebe, Takahiro; Lehner, Franz. Cyclic independence: Boolean and monotone. Algebraic Combinatorics, Volume 6 (2023) no. 6, pp. 1697-1734. doi : 10.5802/alco.309. https://alco.centre-mersenne.org/articles/10.5802/alco.309/

[1] Accardi, Luigi; Ben Ghorbal, Anis; Obata, Nobuaki Monotone independence, comb graphs and Bose-Einstein condensation, Infin. Dimens. Anal. Quantum Probab. Relat. Top., Volume 7 (2004) no. 3, pp. 419-435 | DOI | MR | Zbl

[2] Arizmendi, Octavio; Celestino, Adrián Polynomial with cyclic monotone elements with applications to random matrices with discrete spectrum, Random Matrices Theory Appl., Volume 10 (2021) no. 2, Paper no. 2150020, 19 pages | DOI | MR | Zbl

[3] Bożejko, Marek; Leinert, Michael; Speicher, Roland Convolution and limit theorems for conditionally free random variables, Pacific J. Math., Volume 175 (1996) no. 2, pp. 357-388 | DOI | MR | Zbl

[4] Cébron, Guillaume; Dahlqvist, Antoine; Gabriel, Franck Freeness of type B and conditional freeness for random matrices, Preprint, 2022

[5] Collins, Benoît; Hasebe, Takahiro; Sakuma, Noriyoshi Free probability for purely discrete eigenvalues of random matrices, J. Math. Soc. Japan, Volume 70 (2018) no. 3, pp. 1111-1150 | MR | Zbl

[6] Collins, Benoît; Leid, Felix; Sakuma, Noriyoshi Matrix models for cyclic monotone and monotone independences (arXiv:2202.11666)

[7] Diaz-Aguilera, Carlos; Gaxiola, Tulio; Santos, Jorge; Vargas, Carlos Combinatorics of NC-probability spaces with independent constants, Infin. Dimens. Anal. Quantum Probab. Relat. Top., Volume 25 (2022) no. 2, Paper no. 2250009, 20 pages | DOI | MR | Zbl

[8] Godsil, C.; McKay, B. Some computational results on the spectra of graphs, Combinatorial mathematics, IV (Proc. Fourth Australian Conf., Univ. Adelaide, Adelaide, 1975) (1976), p. 73-92. Lecture Notes in Math., Vol. 560 | Zbl

[9] Godsil, C. D.; McKay, B. D. A new graph product and its spectrum, Bull. Austral. Math. Soc., Volume 18 (1978) no. 1, pp. 21-28 | DOI | MR | Zbl

[10] Hasebe, Takahiro Conditionally monotone independence I: Independence, additive convolutions and related convolutions, Infin. Dimens. Anal. Quantum Probab. Relat. Top., Volume 14 (2011) no. 3, pp. 465-516 | DOI | MR | Zbl

[11] Hasebe, Takahiro; Lehner, Franz Cumulants, Spreadability and the Campbell-Baker-Hausdorff Series (2017) | arXiv

[12] Hora, Akihito; Obata, Nobuaki Quantum probability and spectral analysis of graphs, Theoretical and Mathematical Physics, Springer, Berlin, 2007, xviii+371 pages (With a foreword by Luigi Accardi)

[13] Lehner, Franz Cumulants in noncommutative probability theory. I. Noncommutative Exchangeability Systems, Math. Z., Volume 248 (2004) no. 1, pp. 67-100 | MR | Zbl

[14] Muraki, Naofumi Monotonic convolution and monotonic Lévy-Hinčin formula (2000) (preprint)

[15] Obata, Nobuaki Quantum probabilistic approach to spectral analysis of star graphs, The Proceedings of the Second Sendai Workshop on Quantum Probability and Quantum Information, Volume 10 (2004) no. 1, pp. 41-52 | MR | Zbl

[16] Popa, Mihai A combinatorial approach to monotonic independence over a C * -algebra, Pacific J. Math., Volume 237 (2008) no. 2, pp. 299-325 | DOI | MR | Zbl

[17] Popa, Mihai A new proof for the multiplicative property of the Boolean cumulants with applications to the operator-valued case, Colloq. Math., Volume 117 (2009) no. 1, pp. 81-93 | DOI | MR | Zbl

[18] Rickart, Charles E. General theory of Banach algebras, The University Series in Higher Mathematics, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto-London-New York, 1960, xi+394 pages | MR

[19] Schwenk, Allen J. Computing the characteristic polynomial of a graph, Bari R.A., Harary F. (eds) Graphs and combinatorics (Proc. Capital Conf., George Washington Univ., Washington, D.C., 1973) (Lecture Notes in Math), Volume 406 (1974), pp. 153-172 | MR | Zbl

[20] Shlyakhtenko, Dimitry Free probability of type B and asymptotics of finite-rank perturbations of random matrices, Indiana Univ. Math. J., Volume 67 (2018) no. 2, pp. 971-991 | DOI | MR | Zbl

[21] Smyth, C. J. On the measure of totally real algebraic integers, J. Austral. Math. Soc. Ser. A, Volume 30 (1980/81) no. 2, pp. 137-149 | DOI | MR | Zbl

[22] Smyth, C. J. The mean values of totally real algebraic integers, Math. Comp., Volume 42 (1984) no. 166, pp. 663-681 | DOI | MR | Zbl

[23] Speicher, Roland; Woroudi, Reza Boolean convolution, Free probability theory (Waterloo, ON, 1995) (Fields Inst. Commun.), Volume 12, Amer. Math. Soc., Providence, RI, 1997, pp. 267-279 | MR | Zbl

[24] The Schur complement and its applications (Zhang, Fuzhen, ed.), Numerical Methods and Algorithms, 4, Springer-Verlag, New York, 2005, xvi+295 pages | DOI | Zbl

Cited by Sources: