The present paper introduces a modified version of cyclic-monotone independence which originally arose in the context of random matrices, and also introduces its natural analogy called cyclic-Boolean independence. We investigate formulas for convolutions, limit theorems for sums of independent random variables, and also classify infinitely divisible distributions with respect to cyclic-Boolean convolution. Finally, we provide applications to the eigenvalues of the adjacency matrices of iterated star products of graphs and also iterated comb products of graphs.
Revised:
Accepted:
Published online:
Keywords: Boolean independence, monotone independence, star product, comb product
Arizmendi, Octavio 1; Hasebe, Takahiro 2; Lehner, Franz 3
@article{ALCO_2023__6_6_1697_0, author = {Arizmendi, Octavio and Hasebe, Takahiro and Lehner, Franz}, title = {Cyclic independence: {Boolean} and monotone}, journal = {Algebraic Combinatorics}, pages = {1697--1734}, publisher = {The Combinatorics Consortium}, volume = {6}, number = {6}, year = {2023}, doi = {10.5802/alco.309}, language = {en}, url = {https://alco.centre-mersenne.org/articles/10.5802/alco.309/} }
TY - JOUR AU - Arizmendi, Octavio AU - Hasebe, Takahiro AU - Lehner, Franz TI - Cyclic independence: Boolean and monotone JO - Algebraic Combinatorics PY - 2023 SP - 1697 EP - 1734 VL - 6 IS - 6 PB - The Combinatorics Consortium UR - https://alco.centre-mersenne.org/articles/10.5802/alco.309/ DO - 10.5802/alco.309 LA - en ID - ALCO_2023__6_6_1697_0 ER -
%0 Journal Article %A Arizmendi, Octavio %A Hasebe, Takahiro %A Lehner, Franz %T Cyclic independence: Boolean and monotone %J Algebraic Combinatorics %D 2023 %P 1697-1734 %V 6 %N 6 %I The Combinatorics Consortium %U https://alco.centre-mersenne.org/articles/10.5802/alco.309/ %R 10.5802/alco.309 %G en %F ALCO_2023__6_6_1697_0
Arizmendi, Octavio; Hasebe, Takahiro; Lehner, Franz. Cyclic independence: Boolean and monotone. Algebraic Combinatorics, Volume 6 (2023) no. 6, pp. 1697-1734. doi : 10.5802/alco.309. https://alco.centre-mersenne.org/articles/10.5802/alco.309/
[1] Monotone independence, comb graphs and Bose-Einstein condensation, Infin. Dimens. Anal. Quantum Probab. Relat. Top., Volume 7 (2004) no. 3, pp. 419-435 | DOI | MR | Zbl
[2] Polynomial with cyclic monotone elements with applications to random matrices with discrete spectrum, Random Matrices Theory Appl., Volume 10 (2021) no. 2, Paper no. 2150020, 19 pages | DOI | MR | Zbl
[3] Convolution and limit theorems for conditionally free random variables, Pacific J. Math., Volume 175 (1996) no. 2, pp. 357-388 | DOI | MR | Zbl
[4] Freeness of type B and conditional freeness for random matrices, Preprint, 2022
[5] Free probability for purely discrete eigenvalues of random matrices, J. Math. Soc. Japan, Volume 70 (2018) no. 3, pp. 1111-1150 | MR | Zbl
[6] Matrix models for cyclic monotone and monotone independences (arXiv:2202.11666)
[7] Combinatorics of NC-probability spaces with independent constants, Infin. Dimens. Anal. Quantum Probab. Relat. Top., Volume 25 (2022) no. 2, Paper no. 2250009, 20 pages | DOI | MR | Zbl
[8] Some computational results on the spectra of graphs, Combinatorial mathematics, IV (Proc. Fourth Australian Conf., Univ. Adelaide, Adelaide, 1975) (1976), p. 73-92. Lecture Notes in Math., Vol. 560 | Zbl
[9] A new graph product and its spectrum, Bull. Austral. Math. Soc., Volume 18 (1978) no. 1, pp. 21-28 | DOI | MR | Zbl
[10] Conditionally monotone independence I: Independence, additive convolutions and related convolutions, Infin. Dimens. Anal. Quantum Probab. Relat. Top., Volume 14 (2011) no. 3, pp. 465-516 | DOI | MR | Zbl
[11] Cumulants, Spreadability and the Campbell-Baker-Hausdorff Series (2017) | arXiv
[12] Quantum probability and spectral analysis of graphs, Theoretical and Mathematical Physics, Springer, Berlin, 2007, xviii+371 pages (With a foreword by Luigi Accardi)
[13] Cumulants in noncommutative probability theory. I. Noncommutative Exchangeability Systems, Math. Z., Volume 248 (2004) no. 1, pp. 67-100 | MR | Zbl
[14] Monotonic convolution and monotonic Lévy-Hinčin formula (2000) (preprint)
[15] Quantum probabilistic approach to spectral analysis of star graphs, The Proceedings of the Second Sendai Workshop on Quantum Probability and Quantum Information, Volume 10 (2004) no. 1, pp. 41-52 | MR | Zbl
[16] A combinatorial approach to monotonic independence over a -algebra, Pacific J. Math., Volume 237 (2008) no. 2, pp. 299-325 | DOI | MR | Zbl
[17] A new proof for the multiplicative property of the Boolean cumulants with applications to the operator-valued case, Colloq. Math., Volume 117 (2009) no. 1, pp. 81-93 | DOI | MR | Zbl
[18] General theory of Banach algebras, The University Series in Higher Mathematics, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto-London-New York, 1960, xi+394 pages | MR
[19] Computing the characteristic polynomial of a graph, Bari R.A., Harary F. (eds) Graphs and combinatorics (Proc. Capital Conf., George Washington Univ., Washington, D.C., 1973) (Lecture Notes in Math), Volume 406 (1974), pp. 153-172 | MR | Zbl
[20] Free probability of type B and asymptotics of finite-rank perturbations of random matrices, Indiana Univ. Math. J., Volume 67 (2018) no. 2, pp. 971-991 | DOI | MR | Zbl
[21] On the measure of totally real algebraic integers, J. Austral. Math. Soc. Ser. A, Volume 30 (1980/81) no. 2, pp. 137-149 | DOI | MR | Zbl
[22] The mean values of totally real algebraic integers, Math. Comp., Volume 42 (1984) no. 166, pp. 663-681 | DOI | MR | Zbl
[23] Boolean convolution, Free probability theory (Waterloo, ON, 1995) (Fields Inst. Commun.), Volume 12, Amer. Math. Soc., Providence, RI, 1997, pp. 267-279 | MR | Zbl
[24] The Schur complement and its applications (Zhang, Fuzhen, ed.), Numerical Methods and Algorithms, 4, Springer-Verlag, New York, 2005, xvi+295 pages | DOI | Zbl
Cited by Sources: