Expanding K-theoretic Schur Q-functions
Algebraic Combinatorics, Volume 6 (2023) no. 6, pp. 1419-1445.

We derive several identities involving Ikeda and Naruse’s K-theoretic Schur P- and Q-functions. Our main result is a formula conjectured by Lewis and the second author which expands each K-theoretic Schur Q-function in terms of K-theoretic Schur P-functions. This formula extends to some more general identities relating the skew and dual versions of both power series. We also prove a shifted version of Yeliussizov’s skew Cauchy identity for symmetric Grothendieck polynomials. Finally, we discuss some conjectural formulas for the dual K-theoretic Schur P- and Q-functions of Nakagawa and Naruse. We show that one such formula would imply a basis property expected of the K-theoretic Schur Q-functions.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/alco.312
Classification: 05E05
Keywords: $K$-theoretic Schur $P$- and $Q$-functions, Cauchy identities, shifted tableaux, set-valued tableaux, plane partitions

Chiu, Yu-Cheng 1; Marberg, Eric 2

1 Department of Mathematics ETH Zürich Zürich, Switzerland
2 Department of Mathematics HKUST Clear Water Bay, Hong Kong
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{ALCO_2023__6_6_1419_0,
     author = {Chiu, Yu-Cheng and Marberg, Eric},
     title = {Expanding $K$-theoretic {Schur} $Q$-functions},
     journal = {Algebraic Combinatorics},
     pages = {1419--1445},
     publisher = {The Combinatorics Consortium},
     volume = {6},
     number = {6},
     year = {2023},
     doi = {10.5802/alco.312},
     language = {en},
     url = {https://alco.centre-mersenne.org/articles/10.5802/alco.312/}
}
TY  - JOUR
AU  - Chiu, Yu-Cheng
AU  - Marberg, Eric
TI  - Expanding $K$-theoretic Schur $Q$-functions
JO  - Algebraic Combinatorics
PY  - 2023
SP  - 1419
EP  - 1445
VL  - 6
IS  - 6
PB  - The Combinatorics Consortium
UR  - https://alco.centre-mersenne.org/articles/10.5802/alco.312/
DO  - 10.5802/alco.312
LA  - en
ID  - ALCO_2023__6_6_1419_0
ER  - 
%0 Journal Article
%A Chiu, Yu-Cheng
%A Marberg, Eric
%T Expanding $K$-theoretic Schur $Q$-functions
%J Algebraic Combinatorics
%D 2023
%P 1419-1445
%V 6
%N 6
%I The Combinatorics Consortium
%U https://alco.centre-mersenne.org/articles/10.5802/alco.312/
%R 10.5802/alco.312
%G en
%F ALCO_2023__6_6_1419_0
Chiu, Yu-Cheng; Marberg, Eric. Expanding $K$-theoretic Schur $Q$-functions. Algebraic Combinatorics, Volume 6 (2023) no. 6, pp. 1419-1445. doi : 10.5802/alco.312. https://alco.centre-mersenne.org/articles/10.5802/alco.312/

[1] Barekat, F.; van Willigenburg, S. Composition of transpositions and equality of ribbon Schur Q-functions, Electron. J. Comb., Volume 16 (2009) no. 1, Paper no. R110 | DOI | MR | Zbl

[2] Buch, A. S.; Ravikumar, V. Pieri rules for the K-theory of cominuscule Grassmannians, J. fur Reine Angew. Math., Volume 2012 (2012) no. 668, pp. 109-132 | DOI | Zbl

[3] Clifford, E.; Thomas, H.; Yong, A. K-theoretic Schubert calculus for OG(n,2n+1) and jeu de taquin for shifted increasing tableaux, J. fur Reine Angew. Math., Volume 2014 (2014) no. 690, pp. 51-63 | DOI | Zbl

[4] DeWitt, E. A. Identities relating Schur s-functions and Q-functions, Ph. D. Thesis, University of Michigan (2012)

[5] Gillespie, M.; Salois, K. Inequality of a class of near-ribbon skew Schur Q-functions, 2021 | arXiv

[6] Hamaker, Z.; Keilthy, A.; Patrias, R.; Webster, L.; Zhang, Y.; Zhou, S. Shifted Hecke insertion and the K-theory of OG(n,2n+1), J. Comb. Theory Ser. A, Volume 151 (2017), pp. 207-240 | DOI | MR

[7] Hudson, T.; Ikeda, T.; Matsumura, T.; Naruse, H. Double Grothendieck polynomials for symplectic and odd orthogonal Grassmannians, J. Algebra, Volume 546 (2020), pp. 294-314 | DOI | MR | Zbl

[8] Ikeda, T.; Naruse, H. K-theoretic analogues of factorial Schur P- and Q-functions, Adv. Math., Volume 243 (2013), pp. 22-66 | DOI | MR | Zbl

[9] Ivanov, V. N. Interpolation analogues of Schur Q-functions, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI), Volume 307 (2004), p. 99-119, 281–282 | DOI | MR | Zbl

[10] Lam, T.; Pylyavskyy, P. Combinatorial Hopf Algebras and K-Homology of Grassmanians, Int. Math. Res. Not., Volume 2007 (2007), Paper no. rnm125 | DOI | Zbl

[11] Lewis, J. B.; Marberg, E. Enriched set-valued P-partitions and shifted stable Grothendieck polynomials, Math. Z. (2021), pp. 1929-1972 | DOI | MR | Zbl

[12] Macdonald, I. G. Symmetric functions and Hall polynomials, Oxford university press, New York, 1999

[13] Marberg, E. Shifted insertion algorithms for primed words, 2021 | arXiv

[14] Marberg, E.; Pawlowski, B. K-theory formulas for orthogonal and symplectic orbit closures, Adv. Math., Volume 372 (2020), Paper no. 107299, 42 pages | DOI | MR | Zbl

[15] Marberg, E.; Pawlowski, B. On some properties of symplectic Grothendieck polynomials, J. Pure Appl. Algebra, Volume 225 (2021) no. 1, Paper no. 106463, 22 pages | DOI | MR | Zbl

[16] Nakagawa, M.; Naruse, H. Universal factorial Schur P,Q-functions and their duals, 2018 | arXiv

[17] Nakagawa, M.; Naruse, H. Generating functions for the universal factorial Hall-Littlewood P- and Q-functions, 2021 | arXiv

[18] Naruse, H. Elementary proof and application of the generating functions for generalized Hall–Littlewood functions, J. Algebra, Volume 516 (2018), pp. 197-209 | DOI | MR | Zbl

[19] Okada, Soichi A generalization of Schur’s P- and Q-functions, Sém. Lothar. Combin., Volume 81 (2020), Paper no. B81k, 50 pages | MR | Zbl

[20] Pechenik, Oliver; Yong, Alexander Genomic tableaux, J. Algebraic Combin., Volume 45 (2017) no. 3, pp. 649-685 | DOI | MR | Zbl

[21] Salmasian, H. Equality of Schur’s Q-functions and Their Skew Analogues, Ann. Comb., Volume 3 (2008) no. 12, pp. 325-346 | DOI | MR | Zbl

[22] Stembridge, J. R. Shifted tableaux and the projective representations of symmetric groups, Adv. Math., Volume 74 (1989) no. 1, pp. 87-134 | DOI | MR | Zbl

[23] Stembridge, J. R. Enriched P-partitions, Trans. Amer. Math. Soc., Volume 349 (1997) no. 2, pp. 763-788 | DOI | MR | Zbl

[24] Yeliussizov, D. Symmetric Grothendieck polynomials, skew Cauchy identities, and dual filtered Young graphs, J. Comb. Theory Ser. A, Volume 161 (2019), pp. 453-485 | DOI | MR | Zbl

Cited by Sources: