We derive several identities involving Ikeda and Naruse’s -theoretic Schur - and -functions. Our main result is a formula conjectured by Lewis and the second author which expands each -theoretic Schur -function in terms of -theoretic Schur -functions. This formula extends to some more general identities relating the skew and dual versions of both power series. We also prove a shifted version of Yeliussizov’s skew Cauchy identity for symmetric Grothendieck polynomials. Finally, we discuss some conjectural formulas for the dual -theoretic Schur - and -functions of Nakagawa and Naruse. We show that one such formula would imply a basis property expected of the -theoretic Schur -functions.
Revised:
Accepted:
Published online:
Keywords: $K$-theoretic Schur $P$- and $Q$-functions, Cauchy identities, shifted tableaux, set-valued tableaux, plane partitions
Chiu, Yu-Cheng 1; Marberg, Eric 2
@article{ALCO_2023__6_6_1419_0, author = {Chiu, Yu-Cheng and Marberg, Eric}, title = {Expanding $K$-theoretic {Schur} $Q$-functions}, journal = {Algebraic Combinatorics}, pages = {1419--1445}, publisher = {The Combinatorics Consortium}, volume = {6}, number = {6}, year = {2023}, doi = {10.5802/alco.312}, language = {en}, url = {https://alco.centre-mersenne.org/articles/10.5802/alco.312/} }
TY - JOUR AU - Chiu, Yu-Cheng AU - Marberg, Eric TI - Expanding $K$-theoretic Schur $Q$-functions JO - Algebraic Combinatorics PY - 2023 SP - 1419 EP - 1445 VL - 6 IS - 6 PB - The Combinatorics Consortium UR - https://alco.centre-mersenne.org/articles/10.5802/alco.312/ DO - 10.5802/alco.312 LA - en ID - ALCO_2023__6_6_1419_0 ER -
%0 Journal Article %A Chiu, Yu-Cheng %A Marberg, Eric %T Expanding $K$-theoretic Schur $Q$-functions %J Algebraic Combinatorics %D 2023 %P 1419-1445 %V 6 %N 6 %I The Combinatorics Consortium %U https://alco.centre-mersenne.org/articles/10.5802/alco.312/ %R 10.5802/alco.312 %G en %F ALCO_2023__6_6_1419_0
Chiu, Yu-Cheng; Marberg, Eric. Expanding $K$-theoretic Schur $Q$-functions. Algebraic Combinatorics, Volume 6 (2023) no. 6, pp. 1419-1445. doi : 10.5802/alco.312. https://alco.centre-mersenne.org/articles/10.5802/alco.312/
[1] Composition of transpositions and equality of ribbon Schur -functions, Electron. J. Comb., Volume 16 (2009) no. 1, Paper no. R110 | DOI | MR | Zbl
[2] Pieri rules for the -theory of cominuscule Grassmannians, J. fur Reine Angew. Math., Volume 2012 (2012) no. 668, pp. 109-132 | DOI | Zbl
[3] -theoretic Schubert calculus for OG and jeu de taquin for shifted increasing tableaux, J. fur Reine Angew. Math., Volume 2014 (2014) no. 690, pp. 51-63 | DOI | Zbl
[4] Identities relating Schur -functions and -functions, Ph. D. Thesis, University of Michigan (2012)
[5] Inequality of a class of near-ribbon skew Schur -functions, 2021 | arXiv
[6] Shifted Hecke insertion and the -theory of OG, J. Comb. Theory Ser. A, Volume 151 (2017), pp. 207-240 | DOI | MR
[7] Double Grothendieck polynomials for symplectic and odd orthogonal Grassmannians, J. Algebra, Volume 546 (2020), pp. 294-314 | DOI | MR | Zbl
[8] -theoretic analogues of factorial Schur - and -functions, Adv. Math., Volume 243 (2013), pp. 22-66 | DOI | MR | Zbl
[9] Interpolation analogues of Schur -functions, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI), Volume 307 (2004), p. 99-119, 281–282 | DOI | MR | Zbl
[10] Combinatorial Hopf Algebras and -Homology of Grassmanians, Int. Math. Res. Not., Volume 2007 (2007), Paper no. rnm125 | DOI | Zbl
[11] Enriched set-valued -partitions and shifted stable Grothendieck polynomials, Math. Z. (2021), pp. 1929-1972 | DOI | MR | Zbl
[12] Symmetric functions and Hall polynomials, Oxford university press, New York, 1999
[13] Shifted insertion algorithms for primed words, 2021 | arXiv
[14] -theory formulas for orthogonal and symplectic orbit closures, Adv. Math., Volume 372 (2020), Paper no. 107299, 42 pages | DOI | MR | Zbl
[15] On some properties of symplectic Grothendieck polynomials, J. Pure Appl. Algebra, Volume 225 (2021) no. 1, Paper no. 106463, 22 pages | DOI | MR | Zbl
[16] Universal factorial Schur -functions and their duals, 2018 | arXiv
[17] Generating functions for the universal factorial Hall-Littlewood - and -functions, 2021 | arXiv
[18] Elementary proof and application of the generating functions for generalized HallâLittlewood functions, J. Algebra, Volume 516 (2018), pp. 197-209 | DOI | MR | Zbl
[19] A generalization of Schur’s - and -functions, Sém. Lothar. Combin., Volume 81 (2020), Paper no. B81k, 50 pages | MR | Zbl
[20] Genomic tableaux, J. Algebraic Combin., Volume 45 (2017) no. 3, pp. 649-685 | DOI | MR | Zbl
[21] Equality of Schur’s -functions and Their Skew Analogues, Ann. Comb., Volume 3 (2008) no. 12, pp. 325-346 | DOI | MR | Zbl
[22] Shifted tableaux and the projective representations of symmetric groups, Adv. Math., Volume 74 (1989) no. 1, pp. 87-134 | DOI | MR | Zbl
[23] Enriched -partitions, Trans. Amer. Math. Soc., Volume 349 (1997) no. 2, pp. 763-788 | DOI | MR | Zbl
[24] Symmetric Grothendieck polynomials, skew Cauchy identities, and dual filtered Young graphs, J. Comb. Theory Ser. A, Volume 161 (2019), pp. 453-485 | DOI | MR | Zbl
Cited by Sources: