The -dimension of a graph is the smallest positive integer such that the -dimensional Weisfeiler–Leman algorithm correctly tests the isomorphism between and any other graph. It is proved that the -dimension of any circulant graph of prime power order is at most , and this bound cannot be reduced. The proof is based on using theories of coherent configurations and Cayley schemes over a cyclic group.
Revised:
Accepted:
Published online:
Keywords: Weisfeiler–Leman algorithm, circulant graphs, coherent configurations
Ponomarenko, Ilia 1
@article{ALCO_2023__6_6_1469_0, author = {Ponomarenko, Ilia}, title = {On the {WL-dimension} of circulant graphs of prime power order}, journal = {Algebraic Combinatorics}, pages = {1469--1490}, publisher = {The Combinatorics Consortium}, volume = {6}, number = {6}, year = {2023}, doi = {10.5802/alco.315}, language = {en}, url = {https://alco.centre-mersenne.org/articles/10.5802/alco.315/} }
TY - JOUR AU - Ponomarenko, Ilia TI - On the WL-dimension of circulant graphs of prime power order JO - Algebraic Combinatorics PY - 2023 SP - 1469 EP - 1490 VL - 6 IS - 6 PB - The Combinatorics Consortium UR - https://alco.centre-mersenne.org/articles/10.5802/alco.315/ DO - 10.5802/alco.315 LA - en ID - ALCO_2023__6_6_1469_0 ER -
%0 Journal Article %A Ponomarenko, Ilia %T On the WL-dimension of circulant graphs of prime power order %J Algebraic Combinatorics %D 2023 %P 1469-1490 %V 6 %N 6 %I The Combinatorics Consortium %U https://alco.centre-mersenne.org/articles/10.5802/alco.315/ %R 10.5802/alco.315 %G en %F ALCO_2023__6_6_1469_0
Ponomarenko, Ilia. On the WL-dimension of circulant graphs of prime power order. Algebraic Combinatorics, Volume 6 (2023) no. 6, pp. 1469-1490. doi : 10.5802/alco.315. https://alco.centre-mersenne.org/articles/10.5802/alco.315/
[1] Group, graphs, algorithms: the graph isomorphism problem, Proceedings of the International Congress of Mathematicians—Rio de Janeiro 2018. Vol. IV. Invited lectures, World Sci. Publ., Hackensack, NJ, 2018, pp. 3319-3336 | Zbl
[2] The generalized X-join of Cayley graphs and their automorphisms, Ars Math. Contemp., Volume 24 (2024), Paper no. 6, 23 pages | Zbl
[3] Coherent Configurations, Central China Normal University Press, 2019 (the updated version is available at http://www.pdmi.ras.ru/~inp/ccNOTES.pdf)
[4] Characterization of cyclic Schur groups, St. Petersburg Math. J., Volume 25 (2014), pp. 755-773 | DOI | Zbl
[5] On a family of Schur rings over a finite cyclic group, St. Petersburg Math. J., Volume 13 (2002) no. 3, pp. 441-451 | Zbl
[6] Characterization of cyclotomic schemes and normal Schur rings over a cyclic group, St. Petersburg Math. J., Volume 14 (2003) no. 2, pp. 189-221
[7] Recognizing and isomorphism testing circulant graphs in polynomial time, St. Petersburg Math. J., Volume 15 (2004) no. 6, pp. 813-835 | DOI | Zbl
[8] Schurity of S-rings over a cyclic group and generalized wreath product of permutation groups, St. Petersburg Math. J., Volume 24 (2013) no. 3, pp. 431-460 | DOI | Zbl
[9] On the separability problem for circulant S-rings, St. Petersburg Math. J., Volume 28 (2017) no. 1, pp. 21-35 | DOI | MR | Zbl
[10] Identifiability of Graphs with Small Color Classes by the Weisfeiler–Leman Algorithm, SIAM J. Discrete Math., Volume 35 (2021) no. 3, pp. 1792-1853 | DOI | MR | Zbl
[11] The structure of S-rings over , Sixteenth All Union Algebraic Conference. Part 2, Leningrad (1981), pp. 195-196
[12] Descriptive Complexity, Canonisation, and Definable Graph Structure Theory, Cambridge University Press, 2017 | DOI
[13] Graph isomorphisms in quasi-polynomial time, 2017 | arXiv
[14] A wedge product of association schemes, European J. Combin., Volume 30 (2009) no. 3, pp. 705-715 | DOI | MR | Zbl
[15] Logical complexity of graphs: a survey, Model theoretic methods in finite combinatorics, Amer. Math. Soc., Providence, RI, 2011, pp. 129-179 | DOI | Zbl
[16] Untersuchungen von -Ringen, insbesondere im Gruppenring von -Gruppen, Math. Nachr., Volume 60 (1974), pp. 1-27 | DOI | MR | Zbl
[17] The reduction of a graph to canonical form and the algebra which appears therein, NTI, Ser. 2, Volume 9 (1968), pp. 12-16 (English translation is available at https://www.iti.zcu.cz/wl2018/pdf/wl_paper_translation.pdf)
Cited by Sources: