Specht polynomials classically realize the irreducible representations of the symmetric group. The ideals defined by these polynomials provide a strong connection with the combinatorics of Young tableaux and have been intensively studied by several authors. We initiate similar investigations for the ideals defined by the Specht polynomials associated to the hyperoctahedral group . We introduce a bidominance order on bipartitions which describes the poset of inclusions of these ideals and study algebraic consequences on general -invariant ideals and varieties, which can lead to computational simplifications.
Revised:
Accepted:
Published online:
Keywords: bipartitions, Specht polynomials, hyperoctahedral group, invariant ideals
Debus, Sebastian 1; Moustrou, Philippe 2; Riener, Cordian 3; Verdure, Hugues 3
@article{ALCO_2023__6_6_1593_0, author = {Debus, Sebastian and Moustrou, Philippe and Riener, Cordian and Verdure, Hugues}, title = {The poset of {Specht} ideals for hyperoctahedral groups}, journal = {Algebraic Combinatorics}, pages = {1593--1619}, publisher = {The Combinatorics Consortium}, volume = {6}, number = {6}, year = {2023}, doi = {10.5802/alco.316}, language = {en}, url = {https://alco.centre-mersenne.org/articles/10.5802/alco.316/} }
TY - JOUR AU - Debus, Sebastian AU - Moustrou, Philippe AU - Riener, Cordian AU - Verdure, Hugues TI - The poset of Specht ideals for hyperoctahedral groups JO - Algebraic Combinatorics PY - 2023 SP - 1593 EP - 1619 VL - 6 IS - 6 PB - The Combinatorics Consortium UR - https://alco.centre-mersenne.org/articles/10.5802/alco.316/ DO - 10.5802/alco.316 LA - en ID - ALCO_2023__6_6_1593_0 ER -
%0 Journal Article %A Debus, Sebastian %A Moustrou, Philippe %A Riener, Cordian %A Verdure, Hugues %T The poset of Specht ideals for hyperoctahedral groups %J Algebraic Combinatorics %D 2023 %P 1593-1619 %V 6 %N 6 %I The Combinatorics Consortium %U https://alco.centre-mersenne.org/articles/10.5802/alco.316/ %R 10.5802/alco.316 %G en %F ALCO_2023__6_6_1593_0
Debus, Sebastian; Moustrou, Philippe; Riener, Cordian; Verdure, Hugues. The poset of Specht ideals for hyperoctahedral groups. Algebraic Combinatorics, Volume 6 (2023) no. 6, pp. 1593-1619. doi : 10.5802/alco.316. https://alco.centre-mersenne.org/articles/10.5802/alco.316/
[1] Hessenberg varieties and hyperplane arrangements, J. Reine Angew. Math., Volume 2020 (2020) no. 764, pp. 241-286 | MR | Zbl
[2] Topics in hyperplane arrangements, Math. surv. monogr., 226, AMS, Providence, RI, 2017, xxiv+611 pages | DOI | MR
[3] The representations of the Weyl groups of type , J. Algebra, Volume 68 (1981) no. 2, pp. 298-305 | DOI | MR | Zbl
[4] On the classification of simple modules for cyclotomic Hecke algebras of type and Kleshchev multipartitions, Osaka J. Math., Volume 38 (2001) no. 4, pp. 827-837 | MR | Zbl
[5] Vandermonde varieties, mirrored spaces, and the cohomology of symmetric semi-algebraic sets, Found. Comput. Math. (2021), pp. 1-68
[6] Symmetric non-negative forms and sums of squares, Discrete Comput. Geom., Volume 65 (2021) no. 3, pp. 764-799 | DOI | MR | Zbl
[7] The lattice of integer partitions, Discrete Math., Volume 6 (1973) no. 3, pp. 201-219 | DOI | MR | Zbl
[8] Induced cycle structures of the hyperoctahedral group, SIAM J. Discrete Math., Volume 6 (1993) no. 3, pp. 353-362 | DOI | MR | Zbl
[9] Derangements on the -cube, Discrete Math., Volume 115 (1993) no. 1-3, pp. 65-75 | DOI | MR | Zbl
[10] Invariants of finite groups generated by reflections, Am. J. Math., Volume 77 (1955) no. 4, pp. 778-782 | DOI | MR | Zbl
[11] Even symmetric sextics, Math. Z., Volume 195 (1987) no. 4, pp. 559-580 | DOI | MR | Zbl
[12] Hecke algebras of type at roots of unity, Proc. Lond. Math. Soc., Volume 3 (1995) no. 3, pp. 505-528 | DOI | MR | Zbl
[13] New upper bounds for the density of translative packings of three-dimensional convex bodies with tetrahedral symmetry, Discrete Comput. Geom., Volume 58 (2017) no. 2, pp. 449-481 | DOI | MR | Zbl
[14] Computing critical points for invariant algebraic systems, J. Symb. Comput., Volume 116 (2023), pp. 365-399 | DOI | MR | Zbl
[15] Representations of the hyperoctahedral groups, J. Algebra, Volume 53 (1978) no. 1, pp. 1-20 | DOI | MR | Zbl
[16] The algebra of partitions, Proceedings of the Fourth Canadian Mathematical Congress, Banff, 1957, University of Toronto Press, Toronto, Ont., Banff (1959), pp. 147-159 | Zbl
[17] Real even symmetric ternary forms, J. Algebra, Volume 222 (1999) no. 1, pp. 204-245 | DOI | MR | Zbl
[18] An SOS counterexample to an inequality of symmetric functions, J. Pure Appl. Algebra, Volume 225 (2021) no. 8, Paper no. 106656, 10 pages | DOI | MR | Zbl
[19] Sum-of-squares hierarchy lower bounds for symmetric formulations, Math. Program., Volume 182 (2020) no. 1, pp. 369-397 | DOI | MR | Zbl
[20] Independence numbers of graphs and generators of ideals, Combinatorica, Volume 1 (1981) no. 1, pp. 55-61 | MR | Zbl
[21] Symmetric ideals, Masters thesis, UiT Norges arktiske universitet (2021)
[22] Higher Specht polynomials for the complex reflection group , Hokkaido Math. J., Volume 27 (1998) no. 3, pp. 505-515 | MR | Zbl
[23] Symmetry reduction in AM/GM-based optimization, SIAM J. Optim, Volume 32 (2022) no. 2, pp. 765-785 | DOI | MR | Zbl
[24] Symmetric ideals, Specht polynomials and solutions to symmetric systems of equations, J. Symb. Comput., Volume 107 (2021), pp. 106-121 | DOI | MR | Zbl
[25] A note on the reducedness and Gröbner bases of Specht ideals, Commun. Algebra, Volume 50 (2022) no. 12, pp. 5430-5434 | DOI | Zbl
[26] Representations of the Hyperoctahedral Group , Representations of Finite Groups, Springer, 1993, pp. 197-220 | DOI
[27] Specht Ideals, their varieties and connections to symmetric ideals, MFO-RIMS tandem workshop: Symmetries on polynomial ideals and varieties, Volume Workshops 2021, 2021
[28] Real root finding for equivariant semi-algebraic systems, Proc. Int. Symp. Symb. Algebr. Comput. ISSAC (2018), pp. 335-342 | Zbl
[29] Exploiting symmetries in SDP-relaxations for polynomial optimization, Math. Oper. Res., Volume 38 (2013) no. 1, pp. 122-141 | DOI | MR | Zbl
[30] Finite Unitary Reflection Groups, Can. J. Math., Volume 6 (1954), pp. 274-304 | DOI | MR | Zbl
[31] Darstellungstheorie der Hyperoktaedergruppe, Math. Z., Volume 42 (1937) no. 1, pp. 629-640 | DOI | MR | Zbl
[32] Zur Darstellungstheorie der symmetrischen Gruppe, Math. Z., Volume 42 (1937) no. 1, pp. 774-779 | DOI | MR | Zbl
[33] Ideals of the polynomial ring generated by irreducible symmetric group representations and Ellingsrud-Strømme cells on the Hilbert scheme, Ph. D. Thesis, University of California, Berkeley (2005)
[34] A partial order on bipartitions from the generalized Springer correspondence, J. Comb. Algebra, Volume 2 (2018) no. 3, pp. 301-309 | MR | Zbl
[35] When is a Specht ideal Cohen–Macaulay?, J. Commut. Algebra, Volume 13 (2021) no. 4, pp. 589-608 | MR | Zbl
Cited by Sources: