We study the Castelnuovo–Mumford regularity of powers of edge ideals for arbitrary (finite simple) graphs. It has been repeatedly conjectured that for every graph , for all , which is the best possible upper bound for any . We prove this conjecture for every for all bipartite graphs, and for for all graphs. The case is crucial for our work and suspension plays a key role in its proof.
Revised:
Accepted:
Published online:
Keywords: Edge ideals, regularity, suspension
Banerjee, Arindam 1; Nevo, Eran 2
@article{ALCO_2023__6_6_1687_0, author = {Banerjee, Arindam and Nevo, Eran}, title = {Regularity of {Edge} {Ideals} {Via} {Suspension}}, journal = {Algebraic Combinatorics}, pages = {1687--1695}, publisher = {The Combinatorics Consortium}, volume = {6}, number = {6}, year = {2023}, doi = {10.5802/alco.317}, language = {en}, url = {https://alco.centre-mersenne.org/articles/10.5802/alco.317/} }
TY - JOUR AU - Banerjee, Arindam AU - Nevo, Eran TI - Regularity of Edge Ideals Via Suspension JO - Algebraic Combinatorics PY - 2023 SP - 1687 EP - 1695 VL - 6 IS - 6 PB - The Combinatorics Consortium UR - https://alco.centre-mersenne.org/articles/10.5802/alco.317/ DO - 10.5802/alco.317 LA - en ID - ALCO_2023__6_6_1687_0 ER -
%0 Journal Article %A Banerjee, Arindam %A Nevo, Eran %T Regularity of Edge Ideals Via Suspension %J Algebraic Combinatorics %D 2023 %P 1687-1695 %V 6 %N 6 %I The Combinatorics Consortium %U https://alco.centre-mersenne.org/articles/10.5802/alco.317/ %R 10.5802/alco.317 %G en %F ALCO_2023__6_6_1687_0
Banerjee, Arindam; Nevo, Eran. Regularity of Edge Ideals Via Suspension. Algebraic Combinatorics, Volume 6 (2023) no. 6, pp. 1687-1695. doi : 10.5802/alco.317. https://alco.centre-mersenne.org/articles/10.5802/alco.317/
[1] Powers of edge ideals of regularity three bipartite graphs, J. Commut. Algebra, Volume 9 (2017) no. 4, pp. 441-454 | MR | Zbl
[2] The regularity of powers of edge ideals, J. Algebraic Combin., Volume 41 (2015) no. 2, pp. 303-321 | DOI | MR | Zbl
[3] Regularity of powers of edge ideals: from local properties to global bounds, Algebr. Comb., Volume 3 (2020) no. 4, pp. 839-854 | DOI | Numdam | MR | Zbl
[4] The powers of unmixed bipartite edge ideals, J. Algebra and Its Appl., Volume 26 (2019), pp. 57-70
[5] Topological methods, Handbook of combinatorics, Elsevier, Amsterdam, Volume 1,2 (1995) no. 1, pp. 1819-1872 | DOI | MR | Zbl
[6] Powers of Monomial Ideals With Characteristic-Dependent Betti Numbers, Research in the Mathematical Sciences, Volume 9 (2022) no. 26, pp. 630-645 | MR
[7] Regularity jumps for powers of ideals, Commutative algebra (Lect. Notes Pure Appl. Math.), Volume 244, Chapman & Hall/CRC, Boca Raton, FL, 2006, pp. 21-32 | DOI | MR | Zbl
[8] Castelnuovo-Mumford regularity of products of ideals, Collect. Math., Volume 54 (2003) no. 2, pp. 137-152 | MR | Zbl
[9] Asymptotic behaviour of the Castelnuovo-Mumford regularity, Compositio Math., Volume 118 (1999) no. 3, pp. 243-261 | DOI | MR | Zbl
[10] Bounds on the regularity and projective dimension of ideals associated to graphs, J. Algebraic Combin., Volume 38 (2013) no. 1, pp. 37-55 | MR | Zbl
[11] Boundaries of Coxeter Groups and Simplicial Complexes with Given Links, J. Pure and Appl. Alg., Volume 137 (1999) no. 1, pp. 139-151 | DOI | MR | Zbl
[12] Powers of edge ideals with linear resolutions, Comm. in Alg., Volume 46 (2018) no. 9, pp. 4007-4020 | DOI | MR | Zbl
[13] Powers of Ideals Associated To -Free Graphs, J. Pure Appl. Algebra, Volume 223 (2019) no. 7, pp. 3071-3080 | DOI | MR | Zbl
[14] On Stanley-Reisner rings, Topics in algebra, Part 2 (Warsaw, 1988) (Banach Center Publ.), Volume 26, PWN, Warsaw, 1990, pp. 57-70 | MR | Zbl
[15] Resolution of Squarefree Monomial Ideals Via Facet Ideals: A Survey, Contemporary Mathematics, Volume 448 (2007) no. 2, pp. 91-117 | DOI | MR | Zbl
[16] Monomial ideals, Graduate Texts in Mathematics, 260, Springer-Verlag London, Ltd., London, 2011, xvi+305 pages | DOI | MR
[17] Monomial ideals whose powers have a linear resolution, Math. Scand., Volume 95 (2004) no. 1, pp. 23-32 | DOI | MR | Zbl
[18] Regularity of powers of bipartite graphs, J. Algebraic Combin., Volume 47 (2018) no. 1, pp. 17-38 | DOI | MR | Zbl
[19] Upper bounds for the regularity of powers of edge ideals of graphs, J. Algebra, Volume 574 (2021), pp. 184-205 | DOI | MR | Zbl
[20] Asymptotic behaviour of Castelnuovo-Mumford regularity, Proc. Amer. Math. Soc., Volume 128 (2000) no. 2, pp. 407-411 | DOI | MR | Zbl
[21] Homological invariants of monomial and binomial ideals, Ph. D. Thesis, University of Kansas (2008)
[22] Combinatorial commutative algebra, Graduate Texts in Mathematics, 227, Springer-Verlag, New York, 2005, xiv+417 pages | MR
[23] Integral closure of powers of edge ideals and their regularity., J. Algebra, Volume 609 (2022) no. 5, pp. 120-144 | DOI | MR | Zbl
[24] Characterization of graphs whose a small power of their edge ideals has a linear free resolution, Combinatorica (2023) | DOI
[25] Edge ideals: algebraic and combinatorial properties, Progress in commutative algebra 1, de Gruyter, Berlin, 2012, pp. 85-126 | DOI | MR | Zbl
[26] Regularity of edge ideals of -free graphs via the topology of the lcm-lattice, J. Combin. Theory Ser. A, Volume 118 (2011) no. 2, pp. 491-501 | DOI | MR | Zbl
[27] -free edge ideals, J. Algebraic Combin., Volume 37 (2013) no. 2, pp. 243-248 | DOI | MR | Zbl
[28] Flag-No-Square Triangulations And Gromov Boundaries in Dimension 3, Groups Geom. Dyn., Volume 3 (2009) no. 1, pp. 453-468 | DOI | MR | Zbl
[29] Regularity and cohomology of determinantal thickenings, Proc. Lond. Math. Soc. (3), Volume 116 (2018) no. 2, pp. 248-280 | DOI | MR | Zbl
[30] Matchings, coverings, and Castelnuovo-Mumford regularity, J. Commut. Algebra, Volume 6 (2014) no. 2, pp. 287-304 | MR | Zbl
Cited by Sources: