Regularity of Edge Ideals Via Suspension
Algebraic Combinatorics, Volume 6 (2023) no. 6, pp. 1687-1695.

We study the Castelnuovo–Mumford regularity of powers of edge ideals for arbitrary (finite simple) graphs. It has been repeatedly conjectured that for every graph G, reg(I(G) s )2s+regI(G)-2 for all s2, which is the best possible upper bound for any s. We prove this conjecture for every s for all bipartite graphs, and for s=2 for all graphs. The s=2 case is crucial for our work and suspension plays a key role in its proof.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/alco.317
Classification: 10X99, 14A12, 11L05
Keywords: Edge ideals, regularity, suspension

Banerjee, Arindam 1; Nevo, Eran 2

1 Indian Institute of Technology, Kharagpur
2 Einstein Institute of Mathematics, The Hebrew University of Jerusalem.
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{ALCO_2023__6_6_1687_0,
     author = {Banerjee, Arindam and Nevo, Eran},
     title = {Regularity of {Edge} {Ideals} {Via} {Suspension}},
     journal = {Algebraic Combinatorics},
     pages = {1687--1695},
     publisher = {The Combinatorics Consortium},
     volume = {6},
     number = {6},
     year = {2023},
     doi = {10.5802/alco.317},
     language = {en},
     url = {https://alco.centre-mersenne.org/articles/10.5802/alco.317/}
}
TY  - JOUR
AU  - Banerjee, Arindam
AU  - Nevo, Eran
TI  - Regularity of Edge Ideals Via Suspension
JO  - Algebraic Combinatorics
PY  - 2023
SP  - 1687
EP  - 1695
VL  - 6
IS  - 6
PB  - The Combinatorics Consortium
UR  - https://alco.centre-mersenne.org/articles/10.5802/alco.317/
DO  - 10.5802/alco.317
LA  - en
ID  - ALCO_2023__6_6_1687_0
ER  - 
%0 Journal Article
%A Banerjee, Arindam
%A Nevo, Eran
%T Regularity of Edge Ideals Via Suspension
%J Algebraic Combinatorics
%D 2023
%P 1687-1695
%V 6
%N 6
%I The Combinatorics Consortium
%U https://alco.centre-mersenne.org/articles/10.5802/alco.317/
%R 10.5802/alco.317
%G en
%F ALCO_2023__6_6_1687_0
Banerjee, Arindam; Nevo, Eran. Regularity of Edge Ideals Via Suspension. Algebraic Combinatorics, Volume 6 (2023) no. 6, pp. 1687-1695. doi : 10.5802/alco.317. https://alco.centre-mersenne.org/articles/10.5802/alco.317/

[1] Alilooee, Ali; Banerjee, Arindam Powers of edge ideals of regularity three bipartite graphs, J. Commut. Algebra, Volume 9 (2017) no. 4, pp. 441-454 | MR | Zbl

[2] Banerjee, Arindam The regularity of powers of edge ideals, J. Algebraic Combin., Volume 41 (2015) no. 2, pp. 303-321 | DOI | MR | Zbl

[3] Banerjee, Arindam; Beyarslan, Selvi Kara; Hà, Huy Tài Regularity of powers of edge ideals: from local properties to global bounds, Algebr. Comb., Volume 3 (2020) no. 4, pp. 839-854 | DOI | Numdam | MR | Zbl

[4] Banerjee, Arindam; Mukundan, Vivek The powers of unmixed bipartite edge ideals, J. Algebra and Its Appl., Volume 26 (2019), pp. 57-70

[5] Björner, A. Topological methods, Handbook of combinatorics, Elsevier, Amsterdam, Volume 1,2 (1995) no. 1, pp. 1819-1872 | DOI | MR | Zbl

[6] Bolognini, D.; Machia, A.; Strazzanti, F.; Welker, V. Powers of Monomial Ideals With Characteristic-Dependent Betti Numbers, Research in the Mathematical Sciences, Volume 9 (2022) no. 26, pp. 630-645 | MR

[7] Conca, Aldo Regularity jumps for powers of ideals, Commutative algebra (Lect. Notes Pure Appl. Math.), Volume 244, Chapman & Hall/CRC, Boca Raton, FL, 2006, pp. 21-32 | DOI | MR | Zbl

[8] Conca, Aldo; Herzog, Jürgen Castelnuovo-Mumford regularity of products of ideals, Collect. Math., Volume 54 (2003) no. 2, pp. 137-152 | MR | Zbl

[9] Cutkosky, S. Dale; Herzog, Jürgen; Trung, Ngô Viêt Asymptotic behaviour of the Castelnuovo-Mumford regularity, Compositio Math., Volume 118 (1999) no. 3, pp. 243-261 | DOI | MR | Zbl

[10] Dao, Hailong; Huneke, Craig; Schweig, Jay Bounds on the regularity and projective dimension of ideals associated to graphs, J. Algebraic Combin., Volume 38 (2013) no. 1, pp. 37-55 | MR | Zbl

[11] Dranishnikov, A.N. Boundaries of Coxeter Groups and Simplicial Complexes with Given Links, J. Pure and Appl. Alg., Volume 137 (1999) no. 1, pp. 139-151 | DOI | MR | Zbl

[12] Erey, N. Powers of edge ideals with linear resolutions, Comm. in Alg., Volume 46 (2018) no. 9, pp. 4007-4020 | DOI | MR | Zbl

[13] Erey, N. Powers of Ideals Associated To (C 4 ,2K 2 )-Free Graphs, J. Pure Appl. Algebra, Volume 223 (2019) no. 7, pp. 3071-3080 | DOI | MR | Zbl

[14] Fröberg, Ralf On Stanley-Reisner rings, Topics in algebra, Part 2 (Warsaw, 1988) (Banach Center Publ.), Volume 26, PWN, Warsaw, 1990, pp. 57-70 | MR | Zbl

[15] Hà, Huy Tài; Van Tuyl, Adam Resolution of Squarefree Monomial Ideals Via Facet Ideals: A Survey, Contemporary Mathematics, Volume 448 (2007) no. 2, pp. 91-117 | DOI | MR | Zbl

[16] Herzog, Jürgen; Hibi, Takayuki Monomial ideals, Graduate Texts in Mathematics, 260, Springer-Verlag London, Ltd., London, 2011, xvi+305 pages | DOI | MR

[17] Herzog, Jürgen; Hibi, Takayuki; Zheng, Xinxian Monomial ideals whose powers have a linear resolution, Math. Scand., Volume 95 (2004) no. 1, pp. 23-32 | DOI | MR | Zbl

[18] Jayanthan, A. V.; Narayanan, N.; Selvaraja, S. Regularity of powers of bipartite graphs, J. Algebraic Combin., Volume 47 (2018) no. 1, pp. 17-38 | DOI | MR | Zbl

[19] Jayanthan, A. V.; Selvaraja, S. Upper bounds for the regularity of powers of edge ideals of graphs, J. Algebra, Volume 574 (2021), pp. 184-205 | DOI | MR | Zbl

[20] Kodiyalam, Vijay Asymptotic behaviour of Castelnuovo-Mumford regularity, Proc. Amer. Math. Soc., Volume 128 (2000) no. 2, pp. 407-411 | DOI | MR | Zbl

[21] Kummini, Manoj Homological invariants of monomial and binomial ideals, Ph. D. Thesis, University of Kansas (2008)

[22] Miller, Ezra; Sturmfels, Bernd Combinatorial commutative algebra, Graduate Texts in Mathematics, 227, Springer-Verlag, New York, 2005, xiv+417 pages | MR

[23] Minh, C.; Vu, T. Integral closure of powers of edge ideals and their regularity., J. Algebra, Volume 609 (2022) no. 5, pp. 120-144 | DOI | MR | Zbl

[24] Minh, C.; Vu, T. Characterization of graphs whose a small power of their edge ideals has a linear free resolution, Combinatorica (2023) | DOI

[25] Morey, Susan; Villarreal, Rafael H. Edge ideals: algebraic and combinatorial properties, Progress in commutative algebra 1, de Gruyter, Berlin, 2012, pp. 85-126 | DOI | MR | Zbl

[26] Nevo, Eran Regularity of edge ideals of C 4 -free graphs via the topology of the lcm-lattice, J. Combin. Theory Ser. A, Volume 118 (2011) no. 2, pp. 491-501 | DOI | MR | Zbl

[27] Nevo, Eran; Peeva, Irena C 4 -free edge ideals, J. Algebraic Combin., Volume 37 (2013) no. 2, pp. 243-248 | DOI | MR | Zbl

[28] Przytycki, P.; Swiatkowski, J. Flag-No-Square Triangulations And Gromov Boundaries in Dimension 3, Groups Geom. Dyn., Volume 3 (2009) no. 1, pp. 453-468 | DOI | MR | Zbl

[29] Raicu, Claudiu Regularity and cohomology of determinantal thickenings, Proc. Lond. Math. Soc. (3), Volume 116 (2018) no. 2, pp. 248-280 | DOI | MR | Zbl

[30] Woodroofe, Russ Matchings, coverings, and Castelnuovo-Mumford regularity, J. Commut. Algebra, Volume 6 (2014) no. 2, pp. 287-304 | MR | Zbl

Cited by Sources: