Symmetric edge polytopes of graphs and root polytopes of semi-balanced digraphs are two classes of lattice polytopes whose -polynomials have interesting properties and generalize important graph polynomials. For both types of polytopes there is a large, natural class of dissections into unimodular simplices. These are such that the simplices correspond to certain spanning trees.
We show that for any “spanning tree dissection” of the symmetric edge polytope of a graph, or the root polytope of a semi-balanced digraph, the -polynomial of the polytope can be computed as a generating function of certain activities of the corresponding spanning trees. Apart from giving simple and flexible algorithms for computing these polynomials, our results also reveal that all dissections in question are surprisingly similar to each other: the distributions of many statistics of spanning tree dissections are in fact independent of the actual dissection.
Accepted:
Published online:
Keywords: symmetric edge polytope, root polytope, $h^*$-vector, activity
Kálmán, Tamás 1; Tóthmérész, Lilla 2
@article{ALCO_2023__6_6_1637_0, author = {K\'alm\'an, Tam\'as and T\'othm\'er\'esz, Lilla}, title = {$h^*$-vectors of graph polytopes using activities of dissecting spanning trees}, journal = {Algebraic Combinatorics}, pages = {1637--1651}, publisher = {The Combinatorics Consortium}, volume = {6}, number = {6}, year = {2023}, doi = {10.5802/alco.318}, language = {en}, url = {https://alco.centre-mersenne.org/articles/10.5802/alco.318/} }
TY - JOUR AU - Kálmán, Tamás AU - Tóthmérész, Lilla TI - $h^*$-vectors of graph polytopes using activities of dissecting spanning trees JO - Algebraic Combinatorics PY - 2023 SP - 1637 EP - 1651 VL - 6 IS - 6 PB - The Combinatorics Consortium UR - https://alco.centre-mersenne.org/articles/10.5802/alco.318/ DO - 10.5802/alco.318 LA - en ID - ALCO_2023__6_6_1637_0 ER -
%0 Journal Article %A Kálmán, Tamás %A Tóthmérész, Lilla %T $h^*$-vectors of graph polytopes using activities of dissecting spanning trees %J Algebraic Combinatorics %D 2023 %P 1637-1651 %V 6 %N 6 %I The Combinatorics Consortium %U https://alco.centre-mersenne.org/articles/10.5802/alco.318/ %R 10.5802/alco.318 %G en %F ALCO_2023__6_6_1637_0
Kálmán, Tamás; Tóthmérész, Lilla. $h^*$-vectors of graph polytopes using activities of dissecting spanning trees. Algebraic Combinatorics, Volume 6 (2023) no. 6, pp. 1637-1651. doi : 10.5802/alco.318. https://alco.centre-mersenne.org/articles/10.5802/alco.318/
[1] A characterization of the Tutte polynomial via combinatorial embeddings, Ann. Comb., Volume 12 (2008) no. 2, pp. 139-153 | DOI | MR | Zbl
[2] Tutte polynomial, subgraphs, orientations and sandpile model: new connections via embeddings, Electron. J. Combin., Volume 15 (2008) no. 1, Paper no. 109, 53 pages | MR | Zbl
[3] Many faces of symmetric edge polytopes, Electron. J. Combin., Volume 29 (2022) no. 3, Paper no. 3.24, 42 pages | MR | Zbl
[4] Arithmetic aspects of symmetric edge polytopes, Mathematika, Volume 65 (2019) no. 3, pp. 763-784 | DOI | MR | Zbl
[5] Root polytopes, parking functions, and the HOMFLY polynomial, Quantum Topol., Volume 8 (2017) no. 2, pp. 205-248 | DOI | MR | Zbl
[6] Root polytopes, Tutte polynomials, and a duality theorem for bipartite graphs, Proc. Lond. Math. Soc. (3), Volume 114 (2017) no. 3, pp. 561-588 | DOI | MR | Zbl
[7] Hypergraph polynomials and the Bernardi process, Algebr. Comb., Volume 3 (2020) no. 5, pp. 1099-1139 | Numdam | MR | Zbl
[8] Ehrhart theory of symmetric edge polytopes via ribbon structures, 2022 | arXiv
[9] Root polytopes and Jaeger-type dissections for directed graphs, Mathematika, Volume 68 (2022) no. 4, pp. 1176-1220 | DOI | MR | Zbl
[10] Computing parametric rational generating functions with a primal Barvinok algorithm, Electron. J. Combin., Volume 15 (2008) no. 1, Paper no. 16, 19 pages | MR | Zbl
[11] Roots of Ehrhart polynomials arising from graphs, J. Algebraic Combin., Volume 34 (2011) no. 4, pp. 721-749 | DOI | MR | Zbl
[12] The -polynomials of locally anti-blocking lattice polytopes and their -positivity, Discrete Comput. Geom., Volume 66 (2021) no. 2, pp. 701-722 | DOI | MR | Zbl
[13] Permutohedra, associahedra, and beyond, Int. Math. Res. Not. IMRN (2009) no. 6, pp. 1026-1106 | DOI | MR | Zbl
[14] A contribution to the theory of chromatic polynomials, Canad. J. Math., Volume 6 (1954), pp. 80-91 | DOI | MR | Zbl
Cited by Sources: