Symmetric edge polytopes of graphs and root polytopes of semi-balanced digraphs are two classes of lattice polytopes whose
We show that for any “spanning tree dissection” of the symmetric edge polytope of a graph, or the root polytope of a semi-balanced digraph, the
Accepted:
Published online:
Keywords: symmetric edge polytope, root polytope,
Kálmán, Tamás 1; Tóthmérész, Lilla 2

@article{ALCO_2023__6_6_1637_0, author = {K\'alm\'an, Tam\'as and T\'othm\'er\'esz, Lilla}, title = {$h^*$-vectors of graph polytopes using activities of dissecting spanning trees}, journal = {Algebraic Combinatorics}, pages = {1637--1651}, publisher = {The Combinatorics Consortium}, volume = {6}, number = {6}, year = {2023}, doi = {10.5802/alco.318}, language = {en}, url = {https://alco.centre-mersenne.org/articles/10.5802/alco.318/} }
TY - JOUR AU - Kálmán, Tamás AU - Tóthmérész, Lilla TI - $h^*$-vectors of graph polytopes using activities of dissecting spanning trees JO - Algebraic Combinatorics PY - 2023 SP - 1637 EP - 1651 VL - 6 IS - 6 PB - The Combinatorics Consortium UR - https://alco.centre-mersenne.org/articles/10.5802/alco.318/ DO - 10.5802/alco.318 LA - en ID - ALCO_2023__6_6_1637_0 ER -
%0 Journal Article %A Kálmán, Tamás %A Tóthmérész, Lilla %T $h^*$-vectors of graph polytopes using activities of dissecting spanning trees %J Algebraic Combinatorics %D 2023 %P 1637-1651 %V 6 %N 6 %I The Combinatorics Consortium %U https://alco.centre-mersenne.org/articles/10.5802/alco.318/ %R 10.5802/alco.318 %G en %F ALCO_2023__6_6_1637_0
Kálmán, Tamás; Tóthmérész, Lilla. $h^*$-vectors of graph polytopes using activities of dissecting spanning trees. Algebraic Combinatorics, Volume 6 (2023) no. 6, pp. 1637-1651. doi : 10.5802/alco.318. https://alco.centre-mersenne.org/articles/10.5802/alco.318/
[1] A characterization of the Tutte polynomial via combinatorial embeddings, Ann. Comb., Volume 12 (2008) no. 2, pp. 139-153 | DOI | MR | Zbl
[2] Tutte polynomial, subgraphs, orientations and sandpile model: new connections via embeddings, Electron. J. Combin., Volume 15 (2008) no. 1, Paper no. 109, 53 pages | MR | Zbl
[3] Many faces of symmetric edge polytopes, Electron. J. Combin., Volume 29 (2022) no. 3, Paper no. 3.24, 42 pages | MR | Zbl
[4] Arithmetic aspects of symmetric edge polytopes, Mathematika, Volume 65 (2019) no. 3, pp. 763-784 | DOI | MR | Zbl
[5] Root polytopes, parking functions, and the HOMFLY polynomial, Quantum Topol., Volume 8 (2017) no. 2, pp. 205-248 | DOI | MR | Zbl
[6] Root polytopes, Tutte polynomials, and a duality theorem for bipartite graphs, Proc. Lond. Math. Soc. (3), Volume 114 (2017) no. 3, pp. 561-588 | DOI | MR | Zbl
[7] Hypergraph polynomials and the Bernardi process, Algebr. Comb., Volume 3 (2020) no. 5, pp. 1099-1139 | Numdam | MR | Zbl
[8] Ehrhart theory of symmetric edge polytopes via ribbon structures, 2022 | arXiv
[9] Root polytopes and Jaeger-type dissections for directed graphs, Mathematika, Volume 68 (2022) no. 4, pp. 1176-1220 | DOI | MR | Zbl
[10] Computing parametric rational generating functions with a primal Barvinok algorithm, Electron. J. Combin., Volume 15 (2008) no. 1, Paper no. 16, 19 pages | MR | Zbl
[11] Roots of Ehrhart polynomials arising from graphs, J. Algebraic Combin., Volume 34 (2011) no. 4, pp. 721-749 | DOI | MR | Zbl
[12] The
[13] Permutohedra, associahedra, and beyond, Int. Math. Res. Not. IMRN (2009) no. 6, pp. 1026-1106 | DOI | MR | Zbl
[14] A contribution to the theory of chromatic polynomials, Canad. J. Math., Volume 6 (1954), pp. 80-91 | DOI | MR | Zbl
Cited by Sources: