MAT-free graphic arrangements and a characterization of strongly chordal graphs by edge-labeling
Algebraic Combinatorics, Volume 6 (2023) no. 6, pp. 1447-1467.

Ideal subarrangements of a Weyl arrangement are proved to be free by the multiple addition theorem (MAT) due to Abe–Barakat–Cuntz–Hoge–Terao (2016). They form a significant class among Weyl subarrangements that are known to be free so far. The concept of MAT-free arrangements was introduced recently by Cuntz–Mücksch (2020) to capture a core of the MAT, which enlarges the ideal subarrangements from the perspective of freeness. The aim of this paper is to give a precise characterization of the MAT-freeness in the case of type A Weyl subarrangements (or graphic arrangements). It is known that the ideal and free graphic arrangements correspond to the unit interval and chordal graphs, respectively. We prove that a graphic arrangement is MAT-free if and only if the underlying graph is strongly chordal. In particular, it affirmatively answers a question of Cuntz–Mücksch that MAT-freeness is closed under taking localization in the case of graphic arrangements.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/alco.319
Classification: 52C35, 13N15, 05C78
Keywords: Hyperplane arrangement, free arrangement, MAT-free arrangement, ideal subarrangement, graphic arrangement, strongly chordal graph, edge-labeling of graph

Tran, Tan N. 1; Tsujie, Shuhei 2

1 Leibniz Universität Hannover Fakultät für Mathematik und Physik, Institut für Algebra, Zahlentheorie und Diskrete Mathematik Welfengarten 1, D-30167 Hannover Germany
2 Hokkaido University of Education Department of Mathematics Asahikawa, Hokkaido 070-8621 Japan
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{ALCO_2023__6_6_1447_0,
     author = {Tran, Tan N. and Tsujie, Shuhei},
     title = {MAT-free graphic arrangements and a characterization of strongly chordal graphs by edge-labeling},
     journal = {Algebraic Combinatorics},
     pages = {1447--1467},
     publisher = {The Combinatorics Consortium},
     volume = {6},
     number = {6},
     year = {2023},
     doi = {10.5802/alco.319},
     language = {en},
     url = {https://alco.centre-mersenne.org/articles/10.5802/alco.319/}
}
TY  - JOUR
AU  - Tran, Tan N.
AU  - Tsujie, Shuhei
TI  - MAT-free graphic arrangements and a characterization of strongly chordal graphs by edge-labeling
JO  - Algebraic Combinatorics
PY  - 2023
SP  - 1447
EP  - 1467
VL  - 6
IS  - 6
PB  - The Combinatorics Consortium
UR  - https://alco.centre-mersenne.org/articles/10.5802/alco.319/
DO  - 10.5802/alco.319
LA  - en
ID  - ALCO_2023__6_6_1447_0
ER  - 
%0 Journal Article
%A Tran, Tan N.
%A Tsujie, Shuhei
%T MAT-free graphic arrangements and a characterization of strongly chordal graphs by edge-labeling
%J Algebraic Combinatorics
%D 2023
%P 1447-1467
%V 6
%N 6
%I The Combinatorics Consortium
%U https://alco.centre-mersenne.org/articles/10.5802/alco.319/
%R 10.5802/alco.319
%G en
%F ALCO_2023__6_6_1447_0
Tran, Tan N.; Tsujie, Shuhei. MAT-free graphic arrangements and a characterization of strongly chordal graphs by edge-labeling. Algebraic Combinatorics, Volume 6 (2023) no. 6, pp. 1447-1467. doi : 10.5802/alco.319. https://alco.centre-mersenne.org/articles/10.5802/alco.319/

[1] Abe, T.; Barakat, M.; Cuntz, M.; Hoge, T.; Terao, H. The freeness of ideal subarrangements of Weyl arrangements, J. Eur. Math. Soc., Volume 18 (2016), pp. 1339-1348 | DOI | MR | Zbl

[2] Abe, T.; Terao, H. Multiple addition, deletion and restriction theorems for hyperplane arrangements, Proc. Amer. Math. Soc., Volume 147 (2019) no. 11, pp. 4835-4845 | DOI | MR | Zbl

[3] Cuntz, M.; Mücksch, P. MAT-free reflection arrangements, Electron. J. Combin., Volume 27 (2020) no. 1, Paper no. 1.28, 28 pages | DOI | MR | Zbl

[4] Dirac, G. A. On rigid circuit graphs, Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg, Volume 25, Springer (1961), pp. 71-76 | DOI | MR | Zbl

[5] Edelman, P. H.; Reiner, V. Free hyperplane arrangements between A n-1 and B n , Math. Z., Volume 215 (1994), pp. 347-365 | DOI | MR | Zbl

[6] Farber, M. Characterizations of strongly chordal graphs, Discrete Math., Volume 43 (1983) no. 2–3, pp. 173-189 | DOI | MR | Zbl

[7] Fulkerson, D.; Gross, O. Incidence matrices and interval graphs, Pacific J. Math., Volume 15 (1965) no. 3, pp. 835-855 | DOI | MR | Zbl

[8] Ho, C.; Lee, R. C. T. Counting clique trees and computing perfect elimination schemes in parallel, Inform. Process. Lett., Volume 31 (1989) no. 2, pp. 61-68 | DOI | MR | Zbl

[9] Kuroda, M.; Tsujie, S. Unit ball graphs on geodesic spaces, Graphs Combin., Volume 37 (2021) no. 1, pp. 111-125 | DOI | MR | Zbl

[10] Mücksch, P.; Röhrle, G. Accurate arrangements, Adv. in Math., Volume 383 (2021), Paper no. 107702, 30 pages | DOI | MR | Zbl

[11] Nevries, R.; Rosenke, C. Characterizing and computing the structure of clique intersections in strongly chordal graphs, Discrete Appl. Math., Volume 181 (2015), pp. 221-234 | DOI | MR | Zbl

[12] Orlik, P.; Terao, H. Arrangements of hyperplanes, Grundlehren der Mathematischen Wissenschaften 300, Springer-Verlag, Berlin, 1992 | DOI

[13] Read, R. C. An introduction to chromatic polynomials, J. Combin. Theory, Volume 4 (1968), pp. 52-71 | DOI | MR | Zbl

[14] Sommers, E.; Tymoczko, J. Exponents for B-stable ideals, Trans. Amer. Math. Soc., Volume 358 (2006), pp. 3493-3509 | DOI | MR | Zbl

[15] Stanley, R. P. Supersolvable lattices, Algebra Univers., Volume 2 (1972), pp. 197-217 | DOI | MR | Zbl

[16] Suyama, D.; Torielli, M.; Tsujie, S. Signed graphs and the freeness of the Weyl subarrangements of type B , Discrete Math., Volume 342 (2019) no. 1, pp. 233-249 | DOI | MR | Zbl

[17] Terao, H. Arrangements of hyperplanes and their freeness I, II, J. Fac. Sci. Univ. Tokyo, Volume 27 (1980), pp. 293-320 | Zbl

[18] Terao, H. Generalized exponents of a free arrangement of hyperplanes and Shepherd-Todd-Brieskorn formula, Invent. Math., Volume 63 (1981) no. 1, pp. 159-179 | DOI | MR | Zbl

[19] Torielli, M.; Tsujie, S. Freeness of Hyperplane Arrangements between Boolean Arrangements and Weyl Arrangements of Type B , Electron. J. Combin., Volume 27 (2020) no. 3, Paper no. 3.10, 15 pages | DOI | MR | Zbl

[20] Tran, T. N.; Tsuchiya, A. Worpitzky-compatible subarrangements of braid arrangements and cocomparability graphs, C. R. Math. Acad. Sci. Paris, Volume 359 (2021) no. 6, pp. 665-674 | Numdam | MR | Zbl

Cited by Sources: