Quivers of stylic algebras
Algebraic Combinatorics, Volume 6 (2023) no. 6, pp. 1621-1635.

We construct a complete system of primitive orthogonal idempotents and give an explicit quiver presentation of the monoid algebra of the stylic monoid introduced by Abram and Reutenauer.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/alco.321
Classification: 05E10, 16G20, 20M25, 20M30
Keywords: representation theory, quiver with relations, quiver presentation, complete system of primitive orthogonal idempotents, $J$-trivial monoid, stylic monoid, plactic monoid

Abram, Antoine 1; Reutenauer, Christophe 1; Saliola, Franco V. 1

1 Université du Québec à Montréal Département de mathématiques C.P. 8888, Succursale Centre-ville Montréal, QC H3C 3P8
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{ALCO_2023__6_6_1621_0,
     author = {Abram, Antoine and Reutenauer, Christophe and Saliola, Franco V.},
     title = {Quivers of stylic algebras},
     journal = {Algebraic Combinatorics},
     pages = {1621--1635},
     publisher = {The Combinatorics Consortium},
     volume = {6},
     number = {6},
     year = {2023},
     doi = {10.5802/alco.321},
     language = {en},
     url = {https://alco.centre-mersenne.org/articles/10.5802/alco.321/}
}
TY  - JOUR
AU  - Abram, Antoine
AU  - Reutenauer, Christophe
AU  - Saliola, Franco V.
TI  - Quivers of stylic algebras
JO  - Algebraic Combinatorics
PY  - 2023
SP  - 1621
EP  - 1635
VL  - 6
IS  - 6
PB  - The Combinatorics Consortium
UR  - https://alco.centre-mersenne.org/articles/10.5802/alco.321/
DO  - 10.5802/alco.321
LA  - en
ID  - ALCO_2023__6_6_1621_0
ER  - 
%0 Journal Article
%A Abram, Antoine
%A Reutenauer, Christophe
%A Saliola, Franco V.
%T Quivers of stylic algebras
%J Algebraic Combinatorics
%D 2023
%P 1621-1635
%V 6
%N 6
%I The Combinatorics Consortium
%U https://alco.centre-mersenne.org/articles/10.5802/alco.321/
%R 10.5802/alco.321
%G en
%F ALCO_2023__6_6_1621_0
Abram, Antoine; Reutenauer, Christophe; Saliola, Franco V. Quivers of stylic algebras. Algebraic Combinatorics, Volume 6 (2023) no. 6, pp. 1621-1635. doi : 10.5802/alco.321. https://alco.centre-mersenne.org/articles/10.5802/alco.321/

[1] Abram, A.; Reutenauer, C. The stylic monoid, Semigroup Forum, Volume 105 (2022) no. 1, pp. 1-45 | DOI | MR | Zbl

[2] Assem, Ibrahim; Simson, Daniel; Skowroński, Andrzej Elements of the representation theory of associative algebras. Vol. 1. Techniques of representation theory, London Mathematical Society Student Texts, 65, Cambridge University Press, Cambridge, 2006, x+458 pages | DOI | MR

[3] Auslander, Maurice; Reiten, Idun; Smalø, Sverre O. Representation theory of Artin algebras, Cambridge Studies in Advanced Mathematics, 36, Cambridge University Press, Cambridge, 1997, xiv+425 pages (Corrected reprint of the 1995 original) | MR

[4] Ayyer, Arvind; Schilling, Anne; Steinberg, Benjamin; Thiéry, Nicolas M. Markov chains, -trivial monoids and representation theory, Internat. J. Algebra Comput., Volume 25 (2015) no. 1-2, pp. 169-231 | DOI | MR | Zbl

[5] Berg, Chris; Bergeron, Nantel; Bhargava, Sandeep; Saliola, Franco Primitive orthogonal idempotents for R-trivial monoids, J. Algebra, Volume 348 (2011), pp. 446-461 | DOI | MR

[6] Bidigare, Pat; Hanlon, Phil; Rockmore, Dan A combinatorial description of the spectrum for the Tsetlin library and its generalization to hyperplane arrangements, Duke Math. J., Volume 99 (1999) no. 1, pp. 135-174 | DOI | MR | Zbl

[7] Billera, Louis J.; Brown, Kenneth S.; Diaconis, Persi Random walks and plane arrangements in three dimensions, Amer. Math. Monthly, Volume 106 (1999) no. 6, pp. 502-524 | DOI | MR | Zbl

[8] Bokut, L. A.; Chen, Yuqun; Chen, Weiping; Li, Jing New approaches to plactic monoid via Gröbner-Shirshov bases, J. Algebra, Volume 423 (2015), pp. 301-317 | DOI | MR | Zbl

[9] Brown, Kenneth S. Semigroups, rings, and Markov chains, J. Theoret. Probab., Volume 13 (2000) no. 3, pp. 871-938 | DOI | MR | Zbl

[10] Brown, Kenneth S. Semigroup and ring theoretical methods in probability, Representations of finite dimensional algebras and related topics in Lie theory and geometry (Fields Inst. Commun.), Volume 40, Amer. Math. Soc., Providence, RI, 2004, pp. 3-26 | MR | Zbl

[11] Brown, Kenneth S.; Diaconis, Persi Random walks and hyperplane arrangements, Ann. Probab., Volume 26 (1998) no. 4, pp. 1813-1854 | DOI | MR | Zbl

[12] Cain, Alan J.; Gray, Robert D.; Malheiro, António Finite Gröbner-Shirshov bases for plactic algebras and biautomatic structures for plactic monoids, J. Algebra, Volume 423 (2015), pp. 37-53 | DOI | MR | Zbl

[13] Denton, Tom A combinatorial formula for orthogonal idempotents in the 0-Hecke algebra of the symmetric group, Electron. J. Combin., Volume 18 (2011) no. 1, Paper no. 28, 20 pages | MR | Zbl

[14] Denton, Tom; Hivert, Florent; Schilling, Anne; Thiéry, Nicolas M. On the representation theory of finite 𝒥-trivial monoids, Sém. Lothar. Combin., Volume 64 (2010/11), Paper no. B64d, 44 pages | MR | Zbl

[15] Ganyushkin, Olexandr; Mazorchuk, Volodymyr On Kiselman quotients of 0-Hecke monoids, Int. Electron. J. Algebra, Volume 10 (2011), pp. 174-191 | MR | Zbl

[16] Grensing, Anna-Louise; Mazorchuk, Volodymyr Categorification of the Catalan monoid, Semigroup Forum, Volume 89 (2014) no. 1, pp. 155-168 | DOI | MR | Zbl

[17] Hivert, Florent; Schilling, Anne; Thiéry, Nicolas The biHecke monoid of a finite Coxeter group and its representations, Algebra Number Theory, Volume 7 (2013) no. 3, pp. 595-671 | DOI | MR | Zbl

[18] Lascoux, Alain; Schützenberger, Marcel-P. Le monoïde plaxique, Noncommutative structures in algebra and geometric combinatorics (Naples, 1978) (Quad. “Ricerca Sci.”), Volume 109, CNR, Rome, 1981, pp. 129-156 | MR | Zbl

[19] Lothaire, M. Algebraic combinatorics on words, Encyclopedia of Mathematics and its Applications, 90, Cambridge University Press, Cambridge, 2002, xiv+504 pages | DOI | MR

[20] Margolis, Stuart; Saliola, Franco; Steinberg, Benjamin Combinatorial topology and the global dimension of algebras arising in combinatorics, J. Eur. Math. Soc. (JEMS), Volume 17 (2015) no. 12, pp. 3037-3080 | DOI | MR | Zbl

[21] Margolis, Stuart; Saliola, Franco V.; Steinberg, Benjamin Cell complexes, poset topology and the representation theory of algebras arising in algebraic combinatorics and discrete geometry, Mem. Amer. Math. Soc., Volume 274 (2021) no. 1345, p. xi+135 | DOI | MR | Zbl

[22] Margolis, Stuart; Steinberg, Benjamin The quiver of an algebra associated to the Mantaci-Reutenauer descent algebra and the homology of regular semigroups, Algebr. Represent. Theory, Volume 14 (2011) no. 1, pp. 131-159 | DOI | MR | Zbl

[23] Margolis, Stuart; Steinberg, Benjamin Quivers of monoids with basic algebras, Compos. Math., Volume 148 (2012) no. 5, pp. 1516-1560 | DOI | MR | Zbl

[24] Margolis, Stuart; Steinberg, Benjamin Projective indecomposable modules and quivers for monoid algebras, Comm. Algebra, Volume 46 (2018) no. 12, pp. 5116-5135 | DOI | MR | Zbl

[25] Mazorchuk, Volodymyr; Steinberg, Benjamin Double Catalan monoids, J. Algebraic Combin., Volume 36 (2012) no. 3, pp. 333-354 | DOI | MR | Zbl

[26] Sagan, Bruce E. The symmetric group. Representations, combinatorial algorithms, and symmetric functions, Graduate Texts in Mathematics, 203, Springer-Verlag, New York, 2001, xvi+238 pages | DOI | MR

[27] community, The Sage-Combinat Sage-Combinat: enhancing Sage as a toolbox for computer exploration in algebraic combinatorics, 2008 (http://combinat.sagemath.org)

[28] Saliola, Franco V. The quiver of the semigroup algebra of a left regular band, Internat. J. Algebra Comput., Volume 17 (2007) no. 8, pp. 1593-1610 | DOI | MR | Zbl

[29] Saliola, Franco V. The face semigroup algebra of a hyperplane arrangement, Canad. J. Math., Volume 61 (2009) no. 4, pp. 904-929 | DOI | MR | Zbl

[30] Schützenberger, M.-P. La correspondance de Robinson, Combinatoire et représentation du groupe symétrique (Actes Table Ronde CNRS, Univ. Louis-Pasteur Strasbourg, Strasbourg, 1976) (Lecture Notes in Math., Vol. 579), Springer, Berlin, 1977, pp. 59-113 | MR | Zbl

[31] Stein, Itamar Representation theory of order-related monoids of partial functions as locally trivial category algebras, Algebr. Represent. Theory, Volume 23 (2020) no. 4, pp. 1543-1567 | DOI | MR | Zbl

[32] Steinberg, Benjamin Representation theory of finite monoids, Universitext, Springer, Cham, 2016, xxiv+317 pages | DOI | MR

[33] The Sage Developers SageMath, the Sage Mathematics Software System (Version 9.5) (2022) (https://www.sagemath.org)

Cited by Sources: