The elements of Markoff triples are given by coefficients in certain matrix products defined by Christoffel words, and the Markoff injectivity conjecture, a longstanding open problem (also known as the uniqueness conjecture), is then equivalent to injectivity on Christoffel words. A -analog of these matrix products has been proposed recently, and we prove that injectivity on Christoffel words holds for this -analog. The proof is based on the evaluation at . Other roots of unity provide some information on the original problem, which corresponds to the case . We also extend the problem to arbitrary words and provide a large family of pairs of words where injectivity does not hold.
Revised:
Accepted:
Published online:
Keywords: Markoff number, Christoffel word, $q$-analog
Labbé, Sébastien 1; Lapointe, Mélodie 2; Steiner, Wolfgang 3
@article{ALCO_2023__6_6_1677_0, author = {Labb\'e, S\'ebastien and Lapointe, M\'elodie and Steiner, Wolfgang}, title = {A $q$-analog of the {Markoff} injectivity conjecture holds}, journal = {Algebraic Combinatorics}, pages = {1677--1685}, publisher = {The Combinatorics Consortium}, volume = {6}, number = {6}, year = {2023}, doi = {10.5802/alco.322}, language = {en}, url = {https://alco.centre-mersenne.org/articles/10.5802/alco.322/} }
TY - JOUR AU - Labbé, Sébastien AU - Lapointe, Mélodie AU - Steiner, Wolfgang TI - A $q$-analog of the Markoff injectivity conjecture holds JO - Algebraic Combinatorics PY - 2023 SP - 1677 EP - 1685 VL - 6 IS - 6 PB - The Combinatorics Consortium UR - https://alco.centre-mersenne.org/articles/10.5802/alco.322/ DO - 10.5802/alco.322 LA - en ID - ALCO_2023__6_6_1677_0 ER -
%0 Journal Article %A Labbé, Sébastien %A Lapointe, Mélodie %A Steiner, Wolfgang %T A $q$-analog of the Markoff injectivity conjecture holds %J Algebraic Combinatorics %D 2023 %P 1677-1685 %V 6 %N 6 %I The Combinatorics Consortium %U https://alco.centre-mersenne.org/articles/10.5802/alco.322/ %R 10.5802/alco.322 %G en %F ALCO_2023__6_6_1677_0
Labbé, Sébastien; Lapointe, Mélodie; Steiner, Wolfgang. A $q$-analog of the Markoff injectivity conjecture holds. Algebraic Combinatorics, Volume 6 (2023) no. 6, pp. 1677-1685. doi : 10.5802/alco.322. https://alco.centre-mersenne.org/articles/10.5802/alco.322/
[1] Markov’s theorem and 100 years of the uniqueness conjecture. A mathematical journey from irrational numbers to perfect matchings, Springer, Cham, 2013, x+257 pages | DOI | MR
[2] Knot theory and cluster algebras, Adv. Math., Volume 408 (2022), Paper no. 108609, 45 pages | DOI | MR | Zbl
[3] Combinatorics on words. Christoffel words and repetitions in words, CRM Monograph Series, 27, American Mathematical Society, Providence, RI, 2009, xii+147 pages | MR
[4] The -Markov equation for Laurent polynomials, Mosc. Math. J., Volume 22 (2022) no. 1, pp. 1-68 | DOI | MR | Zbl
[5] Über die Markoffschen Zahlen, Sitzungsberichte der Königlich Preussischen Akademie der Wissenschaften zu Berlin, Volume 26 (1913), pp. 458-487 | Zbl
[6] Concrete mathematics. A foundation for computer science, Addison-Wesley Publishing Company, Reading, MA, 1994, xiv+657 pages | MR
[7] Rank polynomials of fence posets are unimodal, Discrete Math., Volume 346 (2023) no. 2, Paper no. 113218, 20 pages | DOI | MR | Zbl
[8] -Deformations and -deformations of Markov triples (2020) (Accessed 2023-06-07) | arXiv
[9] The -analog of the Markoff injectivity conjecture over the language of a balanced sequence, Comb. Theory, Volume 2 (2022) no. 1, Paper no. 9, 25 pages | DOI | MR | Zbl
[10] On the Frobenius conjecture, Integers, Volume 21 (2021), Paper no. A67, 9 pages | MR | Zbl
[11] -deformations in the modular group and of the real quadratic irrational numbers, Adv. in Appl. Math., Volume 130 (2021), Paper no. 102223, 28 pages | DOI | MR | Zbl
[12] Sur les formes quadratiques binaires indéfinies, Math. Ann., Volume 15 (1879) no. 3, pp. 381-406 | DOI | Zbl
[13] Sur les formes quadratiques binaires indéfinies (second mémoire), Math. Ann., Volume 17 (1880) no. 3, pp. 379-399 | DOI | MR | Zbl
[14] On a rank-unimodality conjecture of Morier-Genoud and Ovsienko, Discrete Math., Volume 344 (2021) no. 8, Paper no. 112483, 13 pages | DOI | MR | Zbl
[15] -deformed rationals and -continued fractions, Forum Math. Sigma, Volume 8 (2020), Paper no. e13, 55 pages | DOI | MR | Zbl
[16] Entry A002559 in The On-Line Encyclopedia of Integer Sequences, 2022 http://oeis.org/A002559
[17] Towards quantized complex numbers: -deformed Gaussian integers and the Picard group, Open Communications in Nonlinear Mathematical Physics, Volume Volume 1 (2021) | DOI
[18] Christoffel words and Markoff triples, Integers, Volume 9 (2009), pp. A26, 327-332 | DOI | MR | Zbl
[19] From Christoffel words to Markoff numbers, Oxford University Press, Oxford, 2019, xi+156 pages | MR
Cited by Sources: