A now-classical cyclic extension of the descent set of a permutation has been introduced by Klyachko and Cellini. Following a recent axiomatic approach to this notion, it is natural to ask which sets of permutations admit such a (not necessarily classical) extension.
The main result of this paper is a complete answer in the case of conjugacy classes of permutations. It is shown that the conjugacy class of cycle type has such an extension if and only if is not of the form for some square-free . The proof involves a detailed study of hook constituents in higher Lie characters.
Revised:
Accepted:
Published online:
Keywords: Cyclic descent, conjugacy class, symmetric group, higher Lie character, hook constituent
Adin, Ron M. 1; Hegedüs, Pál 2; Roichman, Yuval 1
@article{ALCO_2023__6_6_1557_0, author = {Adin, Ron M. and Heged\"us, P\'al and Roichman, Yuval}, title = {Higher {Lie} characters and cyclic descent extension on conjugacy classes}, journal = {Algebraic Combinatorics}, pages = {1557--1591}, publisher = {The Combinatorics Consortium}, volume = {6}, number = {6}, year = {2023}, doi = {10.5802/alco.323}, language = {en}, url = {https://alco.centre-mersenne.org/articles/10.5802/alco.323/} }
TY - JOUR AU - Adin, Ron M. AU - Hegedüs, Pál AU - Roichman, Yuval TI - Higher Lie characters and cyclic descent extension on conjugacy classes JO - Algebraic Combinatorics PY - 2023 SP - 1557 EP - 1591 VL - 6 IS - 6 PB - The Combinatorics Consortium UR - https://alco.centre-mersenne.org/articles/10.5802/alco.323/ DO - 10.5802/alco.323 LA - en ID - ALCO_2023__6_6_1557_0 ER -
%0 Journal Article %A Adin, Ron M. %A Hegedüs, Pál %A Roichman, Yuval %T Higher Lie characters and cyclic descent extension on conjugacy classes %J Algebraic Combinatorics %D 2023 %P 1557-1591 %V 6 %N 6 %I The Combinatorics Consortium %U https://alco.centre-mersenne.org/articles/10.5802/alco.323/ %R 10.5802/alco.323 %G en %F ALCO_2023__6_6_1557_0
Adin, Ron M.; Hegedüs, Pál; Roichman, Yuval. Higher Lie characters and cyclic descent extension on conjugacy classes. Algebraic Combinatorics, Volume 6 (2023) no. 6, pp. 1557-1591. doi : 10.5802/alco.323. https://alco.centre-mersenne.org/articles/10.5802/alco.323/
[1] Cyclic descents for near-hook and two-row shapes, European J. Combin., Volume 79 (2019), pp. 152-178 | DOI | MR | Zbl
[2] Cyclic quasi-symmetric functions, Israel J. Math., Volume 243 (2021) no. 1, pp. 437-500 | DOI | MR | Zbl
[3] On cyclic descents for tableaux, Int. Math. Res. Not. IMRN (2020) no. 24, pp. 10231-10276 | DOI | MR | Zbl
[4] Cyclic Descents, Matchings and Schur-Positivity, Electron. J. Combin., Volume 30 (2023) no. 2, Paper no. 2.41, 26 pages | MR | Zbl
[5] Cyclic sieving, necklaces, and branching rules related to Thrall’s problem, Electron. J. Combin., Volume 25 (2018) no. 4, Paper no. 4.42, 38 pages | MR | Zbl
[6] On cyclic Schur-positive sets of permutations, Electron. J. Combin., Volume 27 (2020) no. 2, Paper no. 2.6, 28 pages | MR | Zbl
[7] Unimodal, log-concave and Pólya frequency sequences in combinatorics, Mem. Amer. Math. Soc., Volume 81 (1989) no. 413, p. viii+106 | Zbl
[8] Cyclic Eulerian elements, European J. Combin., Volume 19 (1998) no. 5, pp. 545-552 | DOI | MR | Zbl
[9] Descent classes of permutations with a given number of fixed points, J. Combin. Theory Ser. A, Volume 64 (1993) no. 2, pp. 311-328 | DOI | MR | Zbl
[10] Affine descents and the Steinberg torus, Adv. in Appl. Math., Volume 42 (2009) no. 4, pp. 423-444 | DOI | MR | Zbl
[11] On rotated Schur-positive sets, J. Combin. Theory Ser. A, Volume 152 (2017), pp. 121-137 | DOI | MR | Zbl
[12] Exact and asymptotic enumeration of cyclic permutations according to descent set, J. Combin. Theory Ser. A, Volume 165 (2019), pp. 360-391 | DOI | MR | Zbl
[13] Combinatorics of the free Lie algebra and the symmetric group, Analysis, et cetera, Academic Press, Boston, MA, 1990, pp. 309-382 | DOI | Zbl
[14] Multipartite -partitions and inner products of skew Schur functions, Combinatorics and algebra (Boulder, Colo., 1983) (Contemp. Math.), Volume 34, Amer. Math. Soc., Providence, RI, 1984, pp. 289-317 | DOI | MR | Zbl
[15] Counting permutations with given cycle structure and descent set, J. Combin. Theory Ser. A, Volume 64 (1993) no. 2, pp. 189-215 | DOI | MR | Zbl
[16] On the decomposition of the Foulkes module, Arch. Math. (Basel), Volume 100 (2013) no. 3, pp. 201-214 | DOI | MR | Zbl
[17] Cyclic descents for general skew tableaux, J. Combin. Theory Ser. A, Volume 169 (2020), Paper no. 105120, 45 pages | MR | Zbl
[18] An explicit model for the complex representations of , Arch. Math. (Basel), Volume 54 (1990) no. 3, pp. 258-259 | DOI | MR | Zbl
[19] Character theory of finite groups, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1976, xii+303 pages | MR
[20] Lie elements in a tensor algebra., Sibirsk. Mat. Ž. (1974), p. 1296-1304, 1430 | MR
[21] Algebra of coinvariants and the action of a Coxeter element, Bayreuth. Math. Schr. (2001) no. 63, pp. 265-284 | MR | Zbl
[22] The formal series Witt transform, Discrete Math., Volume 295 (2005) no. 1-3, pp. 143-160 | DOI | MR | Zbl
[23] Cyclic sieving of increasing tableaux and small Schröder paths, J. Combin. Theory Ser. A, Volume 125 (2014), pp. 357-378 | DOI | Zbl
[24] Promotion and cyclic sieving via webs, J. Algebraic Combin., Volume 30 (2009) no. 1, pp. 19-41 | DOI | MR | Zbl
[25] Thrall’s problem and coarsenings, Banff workshop on positivity in algebraic combinatorics, lecture slides, 2015 https://www-users.cse.umn.edu/~reiner/Talks/ThrallsProblem.pdf
[26] The combinatorics of the bar resolution in group cohomology, J. Pure Appl. Algebra, Volume 190 (2004) no. 1-3, pp. 291-327 | DOI | MR | Zbl
[27] Cyclic sieving, promotion, and representation theory, J. Combin. Theory Ser. A, Volume 117 (2010) no. 1, pp. 38-76 | DOI | MR | Zbl
[28] The symmetric group: Representations, combinatorial algorithms, and symmetric functions, Graduate Texts in Mathematics, 203, Springer-Verlag, New York, 2001, xvi+238 pages | DOI
[29] Multiplicities of higher Lie characters, J. Aust. Math. Soc., Volume 75 (2003) no. 1, pp. 9-21 | DOI | MR | Zbl
[30] Über die rationalen Darstellungen der allgemeinen linearen Gruppe, Sitzungsber. Pr. Akad. Wiss. (1927), pp. 58-75 | Zbl
[31] Log-concave and unimodal sequences in algebra, combinatorics, and geometry, Graph theory and its applications: East and West (Jinan, 1986) (Ann. New York Acad. Sci.), Volume 576, New York Acad. Sci., New York, 1989, pp. 500-535 | MR | Zbl
[32] Enumerative combinatorics. Vol. 1, Cambridge Studies in Advanced Mathematics, 49, Cambridge University Press, Cambridge, 1997, xii+325 pages | DOI
[33] Enumerative combinatorics. Vol. 2, Cambridge Studies in Advanced Mathematics, 62, Cambridge University Press, Cambridge, 1999, xii+581 pages | DOI
[34] On the eigenvalues of representations of reflection groups and wreath products, Pacific J. Math., Volume 140 (1989) no. 2, pp. 353-396 | DOI | MR | Zbl
[35] The homology representations of the symmetric group on Cohen-Macaulay subposets of the partition lattice, Adv. Math., Volume 104 (1994) no. 2, pp. 225-296 | DOI | MR | Zbl
[36] On a variant of , Sém. Lothar. Combin., Volume 80B (2018), Paper no. 19, 12 pages | MR | Zbl
[37] personal communication, 2020
[38] The cycle enumerator of unimodal permutations, Ann. Comb., Volume 5 (2001) no. 3-4, pp. 493-500 | DOI | MR | Zbl
[39] On symmetrized Kronecker powers and the structure of the free Lie ring, Amer. J. Math., Volume 64 (1942), pp. 371-388 | DOI | MR | Zbl
[40] The major index polynomial for conjugacy classes of permutations, Discrete Math., Volume 91 (1991) no. 3, pp. 283-293 | DOI | MR | Zbl
Cited by Sources: