Higher Lie characters and cyclic descent extension on conjugacy classes
Algebraic Combinatorics, Volume 6 (2023) no. 6, pp. 1557-1591.

A now-classical cyclic extension of the descent set of a permutation has been introduced by Klyachko and Cellini. Following a recent axiomatic approach to this notion, it is natural to ask which sets of permutations admit such a (not necessarily classical) extension.

The main result of this paper is a complete answer in the case of conjugacy classes of permutations. It is shown that the conjugacy class of cycle type λ has such an extension if and only if λ is not of the form (r s ) for some square-free r. The proof involves a detailed study of hook constituents in higher Lie characters.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/alco.323
Classification: 05E10, 05E05, 20B30, 20C30
Keywords: Cyclic descent, conjugacy class, symmetric group, higher Lie character, hook constituent

Adin, Ron M. 1; Hegedüs, Pál 2; Roichman, Yuval 1

1 Department of Mathematics Bar-Ilan University Ramat-Gan 52900 Israel
2 Department of Algebra Institute of Mathematics Budapest University of Technology and Economics Műegyetem rkp. 3 H-1111 Budapest Hungary
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{ALCO_2023__6_6_1557_0,
     author = {Adin, Ron M. and Heged\"us, P\'al and Roichman, Yuval},
     title = {Higher {Lie} characters and cyclic descent extension on conjugacy classes},
     journal = {Algebraic Combinatorics},
     pages = {1557--1591},
     publisher = {The Combinatorics Consortium},
     volume = {6},
     number = {6},
     year = {2023},
     doi = {10.5802/alco.323},
     language = {en},
     url = {https://alco.centre-mersenne.org/articles/10.5802/alco.323/}
}
TY  - JOUR
AU  - Adin, Ron M.
AU  - Hegedüs, Pál
AU  - Roichman, Yuval
TI  - Higher Lie characters and cyclic descent extension on conjugacy classes
JO  - Algebraic Combinatorics
PY  - 2023
SP  - 1557
EP  - 1591
VL  - 6
IS  - 6
PB  - The Combinatorics Consortium
UR  - https://alco.centre-mersenne.org/articles/10.5802/alco.323/
DO  - 10.5802/alco.323
LA  - en
ID  - ALCO_2023__6_6_1557_0
ER  - 
%0 Journal Article
%A Adin, Ron M.
%A Hegedüs, Pál
%A Roichman, Yuval
%T Higher Lie characters and cyclic descent extension on conjugacy classes
%J Algebraic Combinatorics
%D 2023
%P 1557-1591
%V 6
%N 6
%I The Combinatorics Consortium
%U https://alco.centre-mersenne.org/articles/10.5802/alco.323/
%R 10.5802/alco.323
%G en
%F ALCO_2023__6_6_1557_0
Adin, Ron M.; Hegedüs, Pál; Roichman, Yuval. Higher Lie characters and cyclic descent extension on conjugacy classes. Algebraic Combinatorics, Volume 6 (2023) no. 6, pp. 1557-1591. doi : 10.5802/alco.323. https://alco.centre-mersenne.org/articles/10.5802/alco.323/

[1] Adin, Ron M.; Elizalde, Sergi; Roichman, Yuval Cyclic descents for near-hook and two-row shapes, European J. Combin., Volume 79 (2019), pp. 152-178 | DOI | MR | Zbl

[2] Adin, Ron M.; Gessel, Ira M.; Reiner, Victor; Roichman, Yuval Cyclic quasi-symmetric functions, Israel J. Math., Volume 243 (2021) no. 1, pp. 437-500 | DOI | MR | Zbl

[3] Adin, Ron M.; Reiner, Victor; Roichman, Yuval On cyclic descents for tableaux, Int. Math. Res. Not. IMRN (2020) no. 24, pp. 10231-10276 | DOI | MR | Zbl

[4] Adin, Ron M.; Roichman, Yuval Cyclic Descents, Matchings and Schur-Positivity, Electron. J. Combin., Volume 30 (2023) no. 2, Paper no. 2.41, 26 pages | MR | Zbl

[5] Ahlbach, Connor; Swanson, Joshua P. Cyclic sieving, necklaces, and branching rules related to Thrall’s problem, Electron. J. Combin., Volume 25 (2018) no. 4, Paper no. 4.42, 38 pages | MR | Zbl

[6] Bloom, Jonathan; Elizalde, Sergi; Roichman, Yuval On cyclic Schur-positive sets of permutations, Electron. J. Combin., Volume 27 (2020) no. 2, Paper no. 2.6, 28 pages | MR | Zbl

[7] Brenti, Francesco Unimodal, log-concave and Pólya frequency sequences in combinatorics, Mem. Amer. Math. Soc., Volume 81 (1989) no. 413, p. viii+106 | Zbl

[8] Cellini, Paola Cyclic Eulerian elements, European J. Combin., Volume 19 (1998) no. 5, pp. 545-552 | DOI | MR | Zbl

[9] Désarménien, Jacques; Wachs, Michelle L. Descent classes of permutations with a given number of fixed points, J. Combin. Theory Ser. A, Volume 64 (1993) no. 2, pp. 311-328 | DOI | MR | Zbl

[10] Dilks, Kevin; Petersen, T. Kyle; Stembridge, John R. Affine descents and the Steinberg torus, Adv. in Appl. Math., Volume 42 (2009) no. 4, pp. 423-444 | DOI | MR | Zbl

[11] Elizalde, Sergi; Roichman, Yuval On rotated Schur-positive sets, J. Combin. Theory Ser. A, Volume 152 (2017), pp. 121-137 | DOI | MR | Zbl

[12] Elizalde, Sergi; Troyka, Justin M. Exact and asymptotic enumeration of cyclic permutations according to descent set, J. Combin. Theory Ser. A, Volume 165 (2019), pp. 360-391 | DOI | MR | Zbl

[13] Garsia, Adriano M. Combinatorics of the free Lie algebra and the symmetric group, Analysis, et cetera, Academic Press, Boston, MA, 1990, pp. 309-382 | DOI | Zbl

[14] Gessel, Ira M. Multipartite P-partitions and inner products of skew Schur functions, Combinatorics and algebra (Boulder, Colo., 1983) (Contemp. Math.), Volume 34, Amer. Math. Soc., Providence, RI, 1984, pp. 289-317 | DOI | MR | Zbl

[15] Gessel, Ira M.; Reutenauer, Christophe Counting permutations with given cycle structure and descent set, J. Combin. Theory Ser. A, Volume 64 (1993) no. 2, pp. 189-215 | DOI | MR | Zbl

[16] Giannelli, Eugenio On the decomposition of the Foulkes module, Arch. Math. (Basel), Volume 100 (2013) no. 3, pp. 201-214 | DOI | MR | Zbl

[17] Huang, Brice Cyclic descents for general skew tableaux, J. Combin. Theory Ser. A, Volume 169 (2020), Paper no. 105120, 45 pages | MR | Zbl

[18] Inglis, Nicolas F. J.; Richardson, Roger W.; Saxl, Jan An explicit model for the complex representations of S n , Arch. Math. (Basel), Volume 54 (1990) no. 3, pp. 258-259 | DOI | MR | Zbl

[19] Isaacs, I. Martin Character theory of finite groups, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1976, xii+303 pages | MR

[20] Klyachko, Aleksandr A. Lie elements in a tensor algebra., Sibirsk. Mat. Ž. (1974), p. 1296-1304, 1430 | MR

[21] Kraśkiewicz, Witold; Weyman, Jerzy Algebra of coinvariants and the action of a Coxeter element, Bayreuth. Math. Schr. (2001) no. 63, pp. 265-284 | MR | Zbl

[22] Moree, Pieter The formal series Witt transform, Discrete Math., Volume 295 (2005) no. 1-3, pp. 143-160 | DOI | MR | Zbl

[23] Pechenik, Oliver Cyclic sieving of increasing tableaux and small Schröder paths, J. Combin. Theory Ser. A, Volume 125 (2014), pp. 357-378 | DOI | Zbl

[24] Petersen, T. Kyle; Pylyavskyy, Pavlo; Rhoades, Brendon Promotion and cyclic sieving via webs, J. Algebraic Combin., Volume 30 (2009) no. 1, pp. 19-41 | DOI | MR | Zbl

[25] Reiner, Victor Thrall’s problem and coarsenings, Banff workshop on positivity in algebraic combinatorics, lecture slides, 2015 https://www-users.cse.umn.edu/~reiner/Talks/ThrallsProblem.pdf

[26] Reiner, Victor; Webb, Peter The combinatorics of the bar resolution in group cohomology, J. Pure Appl. Algebra, Volume 190 (2004) no. 1-3, pp. 291-327 | DOI | MR | Zbl

[27] Rhoades, Brendon Cyclic sieving, promotion, and representation theory, J. Combin. Theory Ser. A, Volume 117 (2010) no. 1, pp. 38-76 | DOI | MR | Zbl

[28] Sagan, Bruce E. The symmetric group: Representations, combinatorial algorithms, and symmetric functions, Graduate Texts in Mathematics, 203, Springer-Verlag, New York, 2001, xvi+238 pages | DOI

[29] Schocker, Manfred Multiplicities of higher Lie characters, J. Aust. Math. Soc., Volume 75 (2003) no. 1, pp. 9-21 | DOI | MR | Zbl

[30] Schur, Issai Über die rationalen Darstellungen der allgemeinen linearen Gruppe, Sitzungsber. Pr. Akad. Wiss. (1927), pp. 58-75 | Zbl

[31] Stanley, Richard P. Log-concave and unimodal sequences in algebra, combinatorics, and geometry, Graph theory and its applications: East and West (Jinan, 1986) (Ann. New York Acad. Sci.), Volume 576, New York Acad. Sci., New York, 1989, pp. 500-535 | MR | Zbl

[32] Stanley, Richard P. Enumerative combinatorics. Vol. 1, Cambridge Studies in Advanced Mathematics, 49, Cambridge University Press, Cambridge, 1997, xii+325 pages | DOI

[33] Stanley, Richard P. Enumerative combinatorics. Vol. 2, Cambridge Studies in Advanced Mathematics, 62, Cambridge University Press, Cambridge, 1999, xii+581 pages | DOI

[34] Stembridge, John R. On the eigenvalues of representations of reflection groups and wreath products, Pacific J. Math., Volume 140 (1989) no. 2, pp. 353-396 | DOI | MR | Zbl

[35] Sundaram, Sheila The homology representations of the symmetric group on Cohen-Macaulay subposets of the partition lattice, Adv. Math., Volume 104 (1994) no. 2, pp. 225-296 | DOI | MR | Zbl

[36] Sundaram, Sheila On a variant of Lie n , Sém. Lothar. Combin., Volume 80B (2018), Paper no. 19, 12 pages | MR | Zbl

[37] Sundaram, Sheila personal communication, 2020

[38] Thibon, Jean-Yves The cycle enumerator of unimodal permutations, Ann. Comb., Volume 5 (2001) no. 3-4, pp. 493-500 | DOI | MR | Zbl

[39] Thrall, Robert M. On symmetrized Kronecker powers and the structure of the free Lie ring, Amer. J. Math., Volume 64 (1942), pp. 371-388 | DOI | MR | Zbl

[40] Wachs, Michelle L. The major index polynomial for conjugacy classes of permutations, Discrete Math., Volume 91 (1991) no. 3, pp. 283-293 | DOI | MR | Zbl

Cited by Sources: