The CastelnuovoâMumford polynomial with is the highest homogeneous component of the Grothendieck polynomial . Pechenik, Speyer and Weigandt define a statistic on that gives the leading monomial of . We introduce a statistic on any diagram through a combinatorial construction âsnow diagramâ that augments and decorates . When is the Rothe diagram of a permutation , agrees with the aforementioned . When is the key diagram of a weak composition , yields the leading monomial of , the highest homogeneous component of the Lascoux polynomials . We use to construct a basis of , the span of with . Then we show gives a natural algebraic interpretation of a classical -analogue of Bell numbers.
Revised:
Accepted:
Published online:
Keywords: Grothendieck polynomials, Lascoux polynomials, Hilbert series, CastelnuovoâMumford polynomials
Pan, Jianping 1; Yu, Tianyi 2
@article{ALCO_2024__7_1_109_0, author = {Pan, Jianping and Yu, Tianyi}, title = {Top-degree components of {Grothendieck} and {Lascoux} polynomials}, journal = {Algebraic Combinatorics}, pages = {109--135}, publisher = {The Combinatorics Consortium}, volume = {7}, number = {1}, year = {2024}, doi = {10.5802/alco.326}, language = {en}, url = {https://alco.centre-mersenne.org/articles/10.5802/alco.326/} }
TY - JOUR AU - Pan, Jianping AU - Yu, Tianyi TI - Top-degree components of Grothendieck and Lascoux polynomials JO - Algebraic Combinatorics PY - 2024 SP - 109 EP - 135 VL - 7 IS - 1 PB - The Combinatorics Consortium UR - https://alco.centre-mersenne.org/articles/10.5802/alco.326/ DO - 10.5802/alco.326 LA - en ID - ALCO_2024__7_1_109_0 ER -
%0 Journal Article %A Pan, Jianping %A Yu, Tianyi %T Top-degree components of Grothendieck and Lascoux polynomials %J Algebraic Combinatorics %D 2024 %P 109-135 %V 7 %N 1 %I The Combinatorics Consortium %U https://alco.centre-mersenne.org/articles/10.5802/alco.326/ %R 10.5802/alco.326 %G en %F ALCO_2024__7_1_109_0
Pan, Jianping; Yu, Tianyi. Top-degree components of Grothendieck and Lascoux polynomials. Algebraic Combinatorics, Volume 7 (2024) no. 1, pp. 109-135. doi : 10.5802/alco.326. https://alco.centre-mersenne.org/articles/10.5802/alco.326/
[1] Some combinatorial properties of Schubert polynomials, J. Algebraic Combin., Volume 2 (1993) no. 4, pp. 345-374 | DOI | MR | Zbl
[2] Positivity in the Grothendieck group of complex flag varieties, J. Algebra, Volume 258 (2002) no. 1, pp. 137-159 | DOI | MR | Zbl
[3] Rook Theory Notes, 2010 (book project, available at http://www.math.ucsd.edu/~remmel/files/Book.pdf)
[4] Generalized pattern avoidance, European J. Combin., Volume 22 (2001) no. 7, pp. 961-971 | DOI | MR | Zbl
[5] Une nouvelle formule des caractĂšres, Bull. Sci. Math. (2), Volume 98 (1974) no. 3, pp. 163-172 | MR | Zbl
[6] On the degree of Grothendieck polynomials, 2022 | arXiv
[7] Grothendieck polynomials and the Yang-Baxter equation, Formal power series and algebraic combinatorics/Séries formelles et combinatoire algébrique, DIMACS, Piscataway, NJ, sd, pp. 183-189 | MR
[8] -counting rook configurations and a formula of Frobenius, J. Combin. Theory Ser. A, Volume 41 (1986) no. 2, pp. 246-275 | DOI | MR | Zbl
[9] Vexillary Grothendieck Polynomials via Bumpless Pipe Dreams, 2022 | arXiv
[10] Permutations, matrices, and generalized Young tableaux, Pacific J. Math., Volume 34 (1970), pp. 709-727 http://projecteuclid.org/euclid.pjm/1102971948 | DOI | MR | Zbl
[11] Gröbner geometry of Schubert polynomials, Ann. of Math. (2), Volume 161 (2005) no. 3, pp. 1245-1318 | DOI | MR | Zbl
[12] Schubert & Grothendieck: un bilan bidécennal, Sém. Lothar. Combin., Volume 50 (2003/04), Paper no. B50i, 32 pages | MR | Zbl
[13] Structure de Hopf de lâanneau de cohomologie et de lâanneau de Grothendieck dâune variĂ©tĂ© de drapeaux, C. R. Acad. Sci. Paris SĂ©r. I Math., Volume 295 (1982) no. 11, pp. 629-633 | MR | Zbl
[14] Tableaux and noncommutative Schubert polynomials, Funct. Anal. Appl., Volume 23 (1989) no. 3, pp. 223-225 | DOI
[15] Grothendieck polynomials via permutation patterns and chains in the Bruhat order, Amer. J. Math., Volume 128 (2006) no. 4, pp. 805-848 | DOI | MR | Zbl
[16] Restricted growth functions, rank row matchings of partition lattices, and -Stirling numbers, Adv. in Math., Volume 43 (1982) no. 2, pp. 173-196 | DOI | MR | Zbl
[17] A bijection between -Kohnert diagrams and reverse set-valued tableaux, Volume 30, 2023 no. 4, Paper no. 4.26, 38 pages | DOI | MR | Zbl
[18] Castelnuovo-Mumford regularity of matrix Schubert varieties, 2021 | arXiv
[19] Key polynomials and a flagged Littlewood-Richardson rule, J. Combin. Theory Ser. A, Volume 70 (1995) no. 1, pp. 107-143 | DOI | MR | Zbl
[20] The âGrothendieck to Lascouxâ conjecture, 2021 | arXiv
[21] Combinatorial rules for three bases of polynomials, SĂ©m. Lothar. Combin., Volume 74 ([2015â2018]), Paper no. B74a, 11 pages | MR | Zbl
[22] The symmetric group: representations, combinatorial algorithms, and symmetric functions, Graduate Texts in Mathematics, 203, Springer-Verlag, New York, 2001, xvi+238 pages | DOI | MR
[23] Longest increasing and decreasing subsequences, Canadian J. Math., Volume 13 (1961), pp. 179-191 | DOI | MR | Zbl
[24] Grothendieck-to-Lascoux expansions, Trans. Amer. Math. Soc., Volume 376 (2023) no. 7, pp. 5181-5220 | DOI | MR | Zbl
[25] Invariant theory and tableaux, The IMA Volumes in Mathematics and its Applications, 19 (1990), p. xii+298 | MR | Zbl
[26] Une forme géométrique de la correspondance de Robinson-Schensted, Combinatoire et représentation du groupe symétrique (Actes Table Ronde CNRS, Univ. Louis-Pasteur Strasbourg, Strasbourg, 1976) (Lecture Notes in Math), Volume Vol. 579, Springer, Berlin, 1977, pp. pp 29-58 | MR | Zbl
[27] Partition statistics and -Bell numbers , J. Integer Seq., Volume 7 (2004) no. 1, Paper no. 04.1.1, 12 pages | MR | Zbl
Cited by Sources: