Bivariate P-polynomial association schemes
Algebraic Combinatorics, Volume 7 (2024) no. 2, pp. 361-382.

Bivariate P-polynomial association scheme of type (α,β) are defined as a generalization of the P-polynomial association schemes. This generalization is shown to be equivalent to a set of conditions on the intersection parameters. A number of known higher rank association schemes are seen to belong to this broad class. Bivariate Q-polynomial association schemes are similarly defined.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/alco.344
Classification: 05E30, 20C15
Keywords: association scheme, bivariate polynomials, metric
Bernard, Pierre-Antoine 1; Crampé, Nicolas 2; Poulain d’Andecy, Loïc 3; Vinet, Luc 1, 4; Zaimi, Meri 1

1 Centre de Recherches Mathématiques Université de Montréal P.O. Box 6128 Centre-ville Station Montréal (Québec) H3C 3J7 Canada
2 Institut Denis-Poisson CNRS/UMR 7013 - Université de Tours - Université d’Orléans Parc de Grandmont 37200 Tours France
3 Laboratoire de mathématiques de Reims UMR 9008 Université de Reims Champagne-Ardenne Moulin de la Housse BP 1039 51100 Reims France
4 IVADO Montréal (Québec) H2S 3H1 Canada
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{ALCO_2024__7_2_361_0,
     author = {Bernard, Pierre-Antoine and Cramp\'e, Nicolas and Poulain~d{\textquoteright}Andecy, Lo{\"\i}c and Vinet, Luc and Zaimi, Meri},
     title = {Bivariate $P$-polynomial association schemes},
     journal = {Algebraic Combinatorics},
     pages = {361--382},
     publisher = {The Combinatorics Consortium},
     volume = {7},
     number = {2},
     year = {2024},
     doi = {10.5802/alco.344},
     language = {en},
     url = {https://alco.centre-mersenne.org/articles/10.5802/alco.344/}
}
TY  - JOUR
AU  - Bernard, Pierre-Antoine
AU  - Crampé, Nicolas
AU  - Poulain d’Andecy, Loïc
AU  - Vinet, Luc
AU  - Zaimi, Meri
TI  - Bivariate $P$-polynomial association schemes
JO  - Algebraic Combinatorics
PY  - 2024
SP  - 361
EP  - 382
VL  - 7
IS  - 2
PB  - The Combinatorics Consortium
UR  - https://alco.centre-mersenne.org/articles/10.5802/alco.344/
DO  - 10.5802/alco.344
LA  - en
ID  - ALCO_2024__7_2_361_0
ER  - 
%0 Journal Article
%A Bernard, Pierre-Antoine
%A Crampé, Nicolas
%A Poulain d’Andecy, Loïc
%A Vinet, Luc
%A Zaimi, Meri
%T Bivariate $P$-polynomial association schemes
%J Algebraic Combinatorics
%D 2024
%P 361-382
%V 7
%N 2
%I The Combinatorics Consortium
%U https://alco.centre-mersenne.org/articles/10.5802/alco.344/
%R 10.5802/alco.344
%G en
%F ALCO_2024__7_2_361_0
Bernard, Pierre-Antoine; Crampé, Nicolas; Poulain d’Andecy, Loïc; Vinet, Luc; Zaimi, Meri. Bivariate $P$-polynomial association schemes. Algebraic Combinatorics, Volume 7 (2024) no. 2, pp. 361-382. doi : 10.5802/alco.344. https://alco.centre-mersenne.org/articles/10.5802/alco.344/

[1] Bailey, R. A. Association schemes: Designed experiments, algebra and combinatorics, Cambridge Studies in Advanced Mathematics, 84, Cambridge University Press, Cambridge, 2004, xviii+387 pages | DOI | MR

[2] Bannai, Eiichi; Ito, Tatsuro Algebraic combinatorics. I: association schemes, The Benjamin/Cummings Publishing Co., Inc., Menlo Park, CA, 1984, xxiv+425 pages | MR

[3] Bernard, Pierre-Antoine; Crampé, Nicolas; Vinet, Luc Entanglement of free fermions on Johnson graphs, J. Math. Phys., Volume 64 (2023) no. 6, Paper no. 061903, 15 pages | DOI | MR | Zbl

[4] Bierbrauer, Jürgen A direct approach to linear programming bounds for codes and tms-nets, Des. Codes Cryptogr., Volume 42 (2007) no. 2, pp. 127-143 | DOI | MR

[5] Bose, R. C.; Mesner, Dale M. On linear associative algebras corresponding to association schemes of partially balanced designs, Ann. Math. Statist., Volume 30 (1959), pp. 21-38 | DOI | MR | Zbl

[6] Brouwer, A. E.; Cohen, A. M.; Neumaier, A. Distance-regular graphs, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], 18, Springer-Verlag, Berlin, 1989, xviii+495 pages | DOI | MR

[7] Crampé, Nicolas; Frappat, Luc; Ragoucy, Eric Representations of the rank two Racah algebra and orthogonal multivariate polynomials, Linear Algebra Appl., Volume 664 (2023), pp. 165-215 | DOI | MR

[8] Delsarte, P. An algebraic approach to the association schemes of coding theory, Philips Res. Rep. Suppl. (1973) no. 10, p. vi+97 | MR | Zbl

[9] Dunkl, Charles F. A Krawtchouk polynomial addition theorem and wreath products of symmetric groups, Indiana Univ. Math. J., Volume 25 (1976) no. 4, pp. 335-358 | DOI | MR

[10] Dunkl, Charles F. An addition theorem for some q-Hahn polynomials, Monatsh. Math., Volume 85 (1978) no. 1, pp. 5-37 | DOI | MR

[11] Genest, Vincent X.; Vinet, Luc; Zhedanov, Alexei The multivariate Krawtchouk polynomials as matrix elements of the rotation group representations on oscillator states, J. Phys. A, Volume 46 (2013) no. 50, Paper no. 505203, 24 pages | DOI | MR | Zbl

[12] Geronimo, Jeffrey S.; Iliev, Plamen Bispectrality of multivariable Racah-Wilson polynomials, Constr. Approx., Volume 31 (2010) no. 3, pp. 417-457 | DOI | MR | Zbl

[13] Geronimo, Jeffrey S.; Iliev, Plamen Multivariable Askey-Wilson function and bispectrality, Ramanujan J., Volume 24 (2011) no. 3, pp. 273-287 | DOI | MR | Zbl

[14] Godsil, C. D. Algebraic combinatorics, Chapman and Hall Mathematics Series, Chapman & Hall, New York, 1993, xvi+362 pages | MR

[15] Godsil, C. D. Association schemes, 2010 https://www.math.uwaterloo.ca/~cgodsil/pdfs/assoc2.pdf (unpublished notes)

[16] Griffiths, R. C. Orthogonal polynomials on the multinomial distribution, Austral. J. Statist., Volume 13 (1971), pp. 27-35 | DOI | MR

[17] Groenevelt, Wolter; Wagenaar, Carel An Askey-Wilson algebra of rank 2, SIGMA Symmetry Integrability Geom. Methods Appl., Volume 19 (2023), Paper no. 008, 35 pages | DOI | MR

[18] Hoare, Michael R.; Rahman, Mizan A probabilistic origin for a new class of bivariate polynomials, SIGMA Symmetry Integrability Geom. Methods Appl., Volume 4 (2008), Paper no. 089, 18 pages | DOI | MR

[19] Iliev, Plamen A Lie-theoretic interpretation of multivariate hypergeometric polynomials, Compos. Math., Volume 148 (2012) no. 3, pp. 991-1002 | DOI | MR

[20] Iliev, Plamen; Terwilliger, Paul The Rahman polynomials and the Lie algebra 𝔰𝔩 3 (), Trans. Amer. Math. Soc., Volume 364 (2012) no. 8, pp. 4225-4238 | DOI | MR

[21] Kurihara, Hirotake Character tables of association schemes based on attenuated spaces, Ann. Comb., Volume 17 (2013) no. 3, pp. 525-541 | DOI | MR

[22] Leonard, Douglas A. Orthogonal polynomials, duality and association schemes, SIAM J. Math. Anal., Volume 13 (1982) no. 4, pp. 656-663 | DOI | MR | Zbl

[23] Liu, Wen The attenuated space poset 𝒜 q (N,M), Linear Algebra Appl., Volume 506 (2016), pp. 244-273 | DOI | MR

[24] Martin, W. J.; Stinson, D. R. Association schemes for ordered orthogonal arrays and (T,M,S)-nets, Canad. J. Math., Volume 51 (1999) no. 2, pp. 326-346 | DOI | MR

[25] Martin, William J.; Muzychuk, Mikhail; Williford, Jason Imprimitive cometric association schemes: constructions and analysis, J. Algebraic Combin., Volume 25 (2007) no. 4, pp. 399-415 | DOI | MR | Zbl

[26] Mizukawa, Hiroshi; Tanaka, Hajime (n+1,m+1)-hypergeometric functions associated to character algebras, Proc. Amer. Math. Soc., Volume 132 (2004) no. 9, pp. 2613-2618 | DOI | MR

[27] Rieck, Michael Q. Association schemes based on isotropic subspaces. I, Discrete Math., Volume 298 (2005) no. 1-3, pp. 301-320 | DOI | MR

[28] Stanton, Dennis Some q-Krawtchouk polynomials on Chevalley groups, Amer. J. Math., Volume 102 (1980) no. 4, pp. 625-662 | DOI | MR

[29] Tarnanen, Hannu; Aaltonen, Matti J.; Goethals, Jean-Marie On the nonbinary Johnson scheme, European J. Combin., Volume 6 (1985) no. 3, pp. 279-285 | DOI | MR | Zbl

[30] Terwilliger, Paul The incidence algebra of a uniform poset, Coding theory and design theory, Part I (IMA Vol. Math. Appl.), Volume 20, Springer, New York, 1990, pp. 193-212 | DOI | MR | Zbl

[31] Terwilliger, Paul The subconstituent algebra of an association scheme. I, J. Algebraic Combin., Volume 1 (1992) no. 4, pp. 363-388 | DOI | MR | Zbl

[32] Terwilliger, Paul The subconstituent algebra of an association scheme. II, J. Algebraic Combin., Volume 2 (1993) no. 1, pp. 73-103 | DOI | MR

[33] Terwilliger, Paul The subconstituent algebra of an association scheme. III, J. Algebraic Combin., Volume 2 (1993) no. 2, pp. 177-210 | DOI | MR

[34] Terwilliger, Paul; Vidunas, Raimundas Leonard pairs and the Askey-Wilson relations, J. Algebra Appl., Volume 3 (2004) no. 4, pp. 411-426 | DOI | MR

[35] Tratnik, M. V. Some multivariable orthogonal polynomials of the Askey tableau-discrete families, J. Math. Phys., Volume 32 (1991) no. 9, pp. 2337-2342 | DOI | MR

[36] Wang, Kaishun; Guo, Jun; Li, Fenggao Association schemes based on attenuated spaces, European J. Combin., Volume 31 (2010) no. 1, pp. 297-305 | DOI | MR | Zbl

[37] Zieschang, Paul-Hermann The exchange condition for association schemes, Israel J. Math., Volume 151 (2006), pp. 357-380 | DOI | MR

Cited by Sources: