Bivariate -polynomial association scheme of type are defined as a generalization of the -polynomial association schemes. This generalization is shown to be equivalent to a set of conditions on the intersection parameters. A number of known higher rank association schemes are seen to belong to this broad class. Bivariate -polynomial association schemes are similarly defined.
Revised:
Accepted:
Published online:
Keywords: association scheme, bivariate polynomials, metric
Bernard, Pierre-Antoine 1; Crampé, Nicolas 2; Poulain d’Andecy, Loïc 3; Vinet, Luc 1, 4; Zaimi, Meri 1
@article{ALCO_2024__7_2_361_0, author = {Bernard, Pierre-Antoine and Cramp\'e, Nicolas and Poulain~d{\textquoteright}Andecy, Lo{\"\i}c and Vinet, Luc and Zaimi, Meri}, title = {Bivariate $P$-polynomial association schemes}, journal = {Algebraic Combinatorics}, pages = {361--382}, publisher = {The Combinatorics Consortium}, volume = {7}, number = {2}, year = {2024}, doi = {10.5802/alco.344}, language = {en}, url = {https://alco.centre-mersenne.org/articles/10.5802/alco.344/} }
TY - JOUR AU - Bernard, Pierre-Antoine AU - Crampé, Nicolas AU - Poulain d’Andecy, Loïc AU - Vinet, Luc AU - Zaimi, Meri TI - Bivariate $P$-polynomial association schemes JO - Algebraic Combinatorics PY - 2024 SP - 361 EP - 382 VL - 7 IS - 2 PB - The Combinatorics Consortium UR - https://alco.centre-mersenne.org/articles/10.5802/alco.344/ DO - 10.5802/alco.344 LA - en ID - ALCO_2024__7_2_361_0 ER -
%0 Journal Article %A Bernard, Pierre-Antoine %A Crampé, Nicolas %A Poulain d’Andecy, Loïc %A Vinet, Luc %A Zaimi, Meri %T Bivariate $P$-polynomial association schemes %J Algebraic Combinatorics %D 2024 %P 361-382 %V 7 %N 2 %I The Combinatorics Consortium %U https://alco.centre-mersenne.org/articles/10.5802/alco.344/ %R 10.5802/alco.344 %G en %F ALCO_2024__7_2_361_0
Bernard, Pierre-Antoine; Crampé, Nicolas; Poulain d’Andecy, Loïc; Vinet, Luc; Zaimi, Meri. Bivariate $P$-polynomial association schemes. Algebraic Combinatorics, Volume 7 (2024) no. 2, pp. 361-382. doi : 10.5802/alco.344. https://alco.centre-mersenne.org/articles/10.5802/alco.344/
[1] Association schemes: Designed experiments, algebra and combinatorics, Cambridge Studies in Advanced Mathematics, 84, Cambridge University Press, Cambridge, 2004, xviii+387 pages | DOI | MR
[2] Algebraic combinatorics. I: association schemes, The Benjamin/Cummings Publishing Co., Inc., Menlo Park, CA, 1984, xxiv+425 pages | MR
[3] Entanglement of free fermions on Johnson graphs, J. Math. Phys., Volume 64 (2023) no. 6, Paper no. 061903, 15 pages | DOI | MR | Zbl
[4] A direct approach to linear programming bounds for codes and tms-nets, Des. Codes Cryptogr., Volume 42 (2007) no. 2, pp. 127-143 | DOI | MR
[5] On linear associative algebras corresponding to association schemes of partially balanced designs, Ann. Math. Statist., Volume 30 (1959), pp. 21-38 | DOI | MR | Zbl
[6] Distance-regular graphs, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], 18, Springer-Verlag, Berlin, 1989, xviii+495 pages | DOI | MR
[7] Representations of the rank two Racah algebra and orthogonal multivariate polynomials, Linear Algebra Appl., Volume 664 (2023), pp. 165-215 | DOI | MR
[8] An algebraic approach to the association schemes of coding theory, Philips Res. Rep. Suppl. (1973) no. 10, p. vi+97 | MR | Zbl
[9] A Krawtchouk polynomial addition theorem and wreath products of symmetric groups, Indiana Univ. Math. J., Volume 25 (1976) no. 4, pp. 335-358 | DOI | MR
[10] An addition theorem for some -Hahn polynomials, Monatsh. Math., Volume 85 (1978) no. 1, pp. 5-37 | DOI | MR
[11] The multivariate Krawtchouk polynomials as matrix elements of the rotation group representations on oscillator states, J. Phys. A, Volume 46 (2013) no. 50, Paper no. 505203, 24 pages | DOI | MR | Zbl
[12] Bispectrality of multivariable Racah-Wilson polynomials, Constr. Approx., Volume 31 (2010) no. 3, pp. 417-457 | DOI | MR | Zbl
[13] Multivariable Askey-Wilson function and bispectrality, Ramanujan J., Volume 24 (2011) no. 3, pp. 273-287 | DOI | MR | Zbl
[14] Algebraic combinatorics, Chapman and Hall Mathematics Series, Chapman & Hall, New York, 1993, xvi+362 pages | MR
[15] Association schemes, 2010 https://www.math.uwaterloo.ca/~cgodsil/pdfs/assoc2.pdf (unpublished notes)
[16] Orthogonal polynomials on the multinomial distribution, Austral. J. Statist., Volume 13 (1971), pp. 27-35 | DOI | MR
[17] An Askey-Wilson algebra of rank 2, SIGMA Symmetry Integrability Geom. Methods Appl., Volume 19 (2023), Paper no. 008, 35 pages | DOI | MR
[18] A probabilistic origin for a new class of bivariate polynomials, SIGMA Symmetry Integrability Geom. Methods Appl., Volume 4 (2008), Paper no. 089, 18 pages | DOI | MR
[19] A Lie-theoretic interpretation of multivariate hypergeometric polynomials, Compos. Math., Volume 148 (2012) no. 3, pp. 991-1002 | DOI | MR
[20] The Rahman polynomials and the Lie algebra , Trans. Amer. Math. Soc., Volume 364 (2012) no. 8, pp. 4225-4238 | DOI | MR
[21] Character tables of association schemes based on attenuated spaces, Ann. Comb., Volume 17 (2013) no. 3, pp. 525-541 | DOI | MR
[22] Orthogonal polynomials, duality and association schemes, SIAM J. Math. Anal., Volume 13 (1982) no. 4, pp. 656-663 | DOI | MR | Zbl
[23] The attenuated space poset , Linear Algebra Appl., Volume 506 (2016), pp. 244-273 | DOI | MR
[24] Association schemes for ordered orthogonal arrays and -nets, Canad. J. Math., Volume 51 (1999) no. 2, pp. 326-346 | DOI | MR
[25] Imprimitive cometric association schemes: constructions and analysis, J. Algebraic Combin., Volume 25 (2007) no. 4, pp. 399-415 | DOI | MR | Zbl
[26] -hypergeometric functions associated to character algebras, Proc. Amer. Math. Soc., Volume 132 (2004) no. 9, pp. 2613-2618 | DOI | MR
[27] Association schemes based on isotropic subspaces. I, Discrete Math., Volume 298 (2005) no. 1-3, pp. 301-320 | DOI | MR
[28] Some -Krawtchouk polynomials on Chevalley groups, Amer. J. Math., Volume 102 (1980) no. 4, pp. 625-662 | DOI | MR
[29] On the nonbinary Johnson scheme, European J. Combin., Volume 6 (1985) no. 3, pp. 279-285 | DOI | MR | Zbl
[30] The incidence algebra of a uniform poset, Coding theory and design theory, Part I (IMA Vol. Math. Appl.), Volume 20, Springer, New York, 1990, pp. 193-212 | DOI | MR | Zbl
[31] The subconstituent algebra of an association scheme. I, J. Algebraic Combin., Volume 1 (1992) no. 4, pp. 363-388 | DOI | MR | Zbl
[32] The subconstituent algebra of an association scheme. II, J. Algebraic Combin., Volume 2 (1993) no. 1, pp. 73-103 | DOI | MR
[33] The subconstituent algebra of an association scheme. III, J. Algebraic Combin., Volume 2 (1993) no. 2, pp. 177-210 | DOI | MR
[34] Leonard pairs and the Askey-Wilson relations, J. Algebra Appl., Volume 3 (2004) no. 4, pp. 411-426 | DOI | MR
[35] Some multivariable orthogonal polynomials of the Askey tableau-discrete families, J. Math. Phys., Volume 32 (1991) no. 9, pp. 2337-2342 | DOI | MR
[36] Association schemes based on attenuated spaces, European J. Combin., Volume 31 (2010) no. 1, pp. 297-305 | DOI | MR | Zbl
[37] The exchange condition for association schemes, Israel J. Math., Volume 151 (2006), pp. 357-380 | DOI | MR
Cited by Sources: