On the EKR-module property
Algebraic Combinatorics, Volume 7 (2024) no. 2, pp. 577-596.

In recent years, the generalization of the Erdős–Ko–Rado (EKR) theorem to permutation groups has been of much interest. A transitive group is said to satisfy the EKR-module property if the characteristic vector of every maximum intersecting set is a linear combination of the characteristic vectors of cosets of stabilizers of points. This generalization of the well-known permutation group version of the Erdős–Ko–Rado (EKR) theorem was introduced by K. Meagher in [28]. In this article, we present several infinite families of permutation groups satisfying the EKR-module property, which shows that permutation groups satisfying this property are quite diverse.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/alco.339
Classification: 05D99, 05E18, 05E30
Keywords: Erdős–Ko–Rado theorems, permutation groups, EKR-module property, derangement graphs

Li, Cai-Heng 1; Pantangi, Venkata Raghu Tej 2

1 SUSTech International Center for Mathematics Department of Mathematics Southern University of Science and Technology Shenzhen, Guangdong 518055 P. R. China
2 Department of Mathematics and Computer Science University of Lethbridge Lethbridge, Alberta T1K 3M4 Canada
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{ALCO_2024__7_2_577_0,
     author = {Li, Cai-Heng and Pantangi, Venkata Raghu Tej},
     title = {On the {EKR-module} property},
     journal = {Algebraic Combinatorics},
     pages = {577--596},
     publisher = {The Combinatorics Consortium},
     volume = {7},
     number = {2},
     year = {2024},
     doi = {10.5802/alco.339},
     language = {en},
     url = {https://alco.centre-mersenne.org/articles/10.5802/alco.339/}
}
TY  - JOUR
AU  - Li, Cai-Heng
AU  - Pantangi, Venkata Raghu Tej
TI  - On the EKR-module property
JO  - Algebraic Combinatorics
PY  - 2024
SP  - 577
EP  - 596
VL  - 7
IS  - 2
PB  - The Combinatorics Consortium
UR  - https://alco.centre-mersenne.org/articles/10.5802/alco.339/
DO  - 10.5802/alco.339
LA  - en
ID  - ALCO_2024__7_2_577_0
ER  - 
%0 Journal Article
%A Li, Cai-Heng
%A Pantangi, Venkata Raghu Tej
%T On the EKR-module property
%J Algebraic Combinatorics
%D 2024
%P 577-596
%V 7
%N 2
%I The Combinatorics Consortium
%U https://alco.centre-mersenne.org/articles/10.5802/alco.339/
%R 10.5802/alco.339
%G en
%F ALCO_2024__7_2_577_0
Li, Cai-Heng; Pantangi, Venkata Raghu Tej. On the EKR-module property. Algebraic Combinatorics, Volume 7 (2024) no. 2, pp. 577-596. doi : 10.5802/alco.339. https://alco.centre-mersenne.org/articles/10.5802/alco.339/

[1] Ahmadi, Bahman; Meagher, Karen A new proof for the Erdős–Ko–Rado theorem for the alternating group, Discrete Math., Volume 324 (2014), pp. 28-40 | DOI | MR | Zbl

[2] Ahmadi, Bahman; Meagher, Karen The Erdős–Ko–Rado property for some 2-transitive groups, Ann. Comb., Volume 19 (2015) no. 4, pp. 621-640 | DOI | MR

[3] Ahmadi, Bahman; Meagher, Karen The Erdős-Ko-Rado property for some permutation groups, Australas. J. Combin., Volume 61 (2015), pp. 23-41 | MR

[4] Asgarli, Shamil; Goryainov, Sergey; Lin, Huiqiu; Yip, Chi Hoi The EKR-module property of pseudo-Paley graphs of square order, Electron. J. Combin., Volume 29 (2022) no. 4, Paper no. 4.33, 19 pages | DOI | MR

[5] Babai, László Spectra of Cayley graphs, J. Combin. Theory Ser. B, Volume 27 (1979) no. 2, pp. 180-189 | DOI | MR

[6] Bannai, Eiichi Maximal subgroups of low rank of finite symmetric and alternating groups, J. Fac. Sci. Univ. Tokyo Sect. IA Math., Volume 18 (1971/72), pp. 475-486 | MR | Zbl

[7] Bardestani, Mohammad; Mallahi-Karai, Keivan On the Erdős–Ko–Rado property for finite groups, J. Algebraic Combin., Volume 42 (2015) no. 1, pp. 111-128 | DOI | MR

[8] Brouwer, A. E.; Wilson, R. M.; Xiang, Qing Cyclotomy and strongly regular graphs, J. Algebraic Combin., Volume 10 (1999) no. 1, pp. 25-28 | DOI | MR | Zbl

[9] Cameron, Peter J.; Ku, C. Y. Intersecting families of permutations, European J. Combin., Volume 24 (2003) no. 7, pp. 881-890 | DOI | MR

[10] Conway, J. H.; Curtis, R. T.; Norton, S. P.; Parker, R. A.; Wilson, R. A. 𝔸𝕋𝕃𝔸𝕊 of finite groups: Maximal subgroups and ordinary characters for simple groups, Oxford University Press, Eynsham, 1985, xxxiv+252 pages | MR

[11] Delsarte, P. An algebraic approach to the association schemes of coding theory, Philips Res. Rep. Suppl. (1973) no. 10, p. vi+97 | MR

[12] Devillers, Alice; Giudici, Michael; Li, Cai-Heng; Pearce, Geoffrey; Praeger, Cheryl E. On imprimitive rank 3 permutation groups, J. Lond. Math. Soc. (2), Volume 84 (2011) no. 3, pp. 649-669 | DOI | MR

[13] Diaconis, Persi; Shahshahani, Mehrdad Generating a random permutation with random transpositions, Z. Wahrsch. Verw. Gebiete, Volume 57 (1981) no. 2, pp. 159-179 | DOI | MR

[14] Ellis, David Setwise intersecting families of permutations, J. Combin. Theory Ser. A, Volume 119 (2012) no. 4, pp. 825-849 | DOI | MR | Zbl

[15] Erdős, Paul; Ko, Chao; Rado, Richard Intersection theorems for systems of finite sets, Quart. J. Math. Oxford Ser. (2), Volume 12 (1961), pp. 313-320 | DOI | MR

[16] Frankl, Péter; Deza, Mikhail On the maximum number of permutations with given maximal or minimal distance, J. Combin. Theory Ser. A, Volume 22 (1977) no. 3, pp. 352-360 http://www.sciencedirect.com/science/article/pii/0097316577900097 | DOI | MR | Zbl

[17] Frankl, Péter; Wilson, Richard M The Erdős–Ko–Rado theorem for vector spaces, J. Combin. Theory Ser. A, Volume 43 (1986) no. 2, pp. 228-236 | DOI | MR

[18] Godsil, Chris; Meagher, Karen A new proof of the Erdős–Ko–Rado theorem for intersecting families of permutations, European J. Combin., Volume 30 (2009) no. 2, pp. 404-414 | DOI | MR

[19] Godsil, Chris; Meagher, Karen Erdős–Ko–Rado Theorems: Algebraic Approaches, Cambridge Studies in Advanced Mathematics, 149, Cambridge University Press, Cambridge, 2016, xvi+335 pages | DOI | MR

[20] Godsil, Chris; Royle, Gordon Algebraic graph theory, Graduate Texts in Mathematics, 207, Springer-Verlag, New York, 2001, xx+439 pages | DOI | MR

[21] Hujdurović, Ademir; Kutnar, Klavdija; Marušič, Dragan; Miklavič, Štefko On maximum intersecting sets in direct and wreath product of groups, European J. Combin., Volume 103 (2022), Paper no. 103523, 11 pages | DOI | MR

[22] Isaacs, I. Martin Character theory of finite groups, AMS Chelsea Publishing, Providence, RI, 2006, xii+310 pages | DOI | MR

[23] Kantor, William M.; Liebler, Robert A. The rank 3 permutation representations of the finite classical groups, Trans. Amer. Math. Soc., Volume 271 (1982) no. 1, pp. 1-71 | DOI | MR

[24] Larose, Benoit; Malvenuto, Claudia Stable sets of maximal size in Kneser-type graphs, European J. Combin., Volume 25 (2004) no. 5, pp. 657-673 | DOI | MR

[25] Li, Cai-Heng; Song, Shu Jiao; Pantangi, Venkata Raghu Tej Erdős–Ko–Rado problems for permutation groups, 2020 | arXiv

[26] Liebeck, Martin W.; Saxl, Jan The finite primitive permutation groups of rank three, Bull. London Math. Soc., Volume 18 (1986) no. 2, pp. 165-172 | DOI | MR

[27] Long, Ling; Plaza, Rafael; Sin, Peter; Xiang, Qing Characterization of intersecting families of maximum size in PSL (2,q), J. Combin. Theory Ser. A, Volume 157 (2018), pp. 461-499 | DOI | MR

[28] Meagher, Karen An Erdős–Ko–Rado theorem for the group PSU (3,q), Des. Codes Cryptogr., Volume 87 (2019) no. 4, pp. 717-744 | DOI | MR | Zbl

[29] Meagher, Karen; Razafimahatratra, Andriaherimanana Sarobidy; Spiga, Pablo On triangles in derangement graphs, J. Combin. Theory Ser. A, Volume 180 (2021), Paper no. 105390, 26 pages | DOI | MR

[30] Meagher, Karen; Sin, Peter All 2-transitive groups have the EKR-module property, J. Combin. Theory Ser. A, Volume 177 (2021), Paper no. 105322, 21 pages | DOI | MR | Zbl

[31] Meagher, Karen; Spiga, Pablo An Erdős–Ko–Rado theorem for the derangement graph of PGL (2,q) acting on the projective line, J. Combin. Theory Ser. A, Volume 118 (2011) no. 2, pp. 532-544 | DOI | MR | Zbl

[32] Meagher, Karen; Spiga, Pablo; Tiep, Pham Huu An Erdős–Ko–Rado theorem for finite 2-transitive groups, European J. Combin., Volume 55 (2016), pp. 100-118 | DOI | MR

[33] Praeger, Cheryl E. Finite quasiprimitive graphs, Surveys in combinatorics, 1997 (London) (London Math. Soc. Lecture Note Ser.), Volume 241, Cambridge Univ. Press, Cambridge, 1997, pp. 65-85 | DOI | MR

Cited by Sources: