A function is a -quasihomomorphism if the Hamming distance between and is at most for all . We show that any -quasihomomorphism has distance at most some constant to an actual group homomorphism; here depends only on and not on or . This gives a positive answer to a special case of a question posed by Kazhdan and Ziegler.
Revised:
Accepted:
Published online:
Keywords: Quasihomomorphisms, Hamming distance, Linear approximation
Draisma, Jan 1; Eggermont, Rob H. 2; Seynnaeve, Tim 3; Tairi, Nafie 4; Ventura, Emanuele 5
@article{ALCO_2024__7_3_843_0, author = {Draisma, Jan and Eggermont, Rob H. and Seynnaeve, Tim and Tairi, Nafie and Ventura, Emanuele}, title = {Quasihomomorphisms from the integers into {Hamming} metrics}, journal = {Algebraic Combinatorics}, pages = {843--851}, publisher = {The Combinatorics Consortium}, volume = {7}, number = {3}, year = {2024}, doi = {10.5802/alco.348}, language = {en}, url = {https://alco.centre-mersenne.org/articles/10.5802/alco.348/} }
TY - JOUR AU - Draisma, Jan AU - Eggermont, Rob H. AU - Seynnaeve, Tim AU - Tairi, Nafie AU - Ventura, Emanuele TI - Quasihomomorphisms from the integers into Hamming metrics JO - Algebraic Combinatorics PY - 2024 SP - 843 EP - 851 VL - 7 IS - 3 PB - The Combinatorics Consortium UR - https://alco.centre-mersenne.org/articles/10.5802/alco.348/ DO - 10.5802/alco.348 LA - en ID - ALCO_2024__7_3_843_0 ER -
%0 Journal Article %A Draisma, Jan %A Eggermont, Rob H. %A Seynnaeve, Tim %A Tairi, Nafie %A Ventura, Emanuele %T Quasihomomorphisms from the integers into Hamming metrics %J Algebraic Combinatorics %D 2024 %P 843-851 %V 7 %N 3 %I The Combinatorics Consortium %U https://alco.centre-mersenne.org/articles/10.5802/alco.348/ %R 10.5802/alco.348 %G en %F ALCO_2024__7_3_843_0
Draisma, Jan; Eggermont, Rob H.; Seynnaeve, Tim; Tairi, Nafie; Ventura, Emanuele. Quasihomomorphisms from the integers into Hamming metrics. Algebraic Combinatorics, Volume 7 (2024) no. 3, pp. 843-851. doi : 10.5802/alco.348. https://alco.centre-mersenne.org/articles/10.5802/alco.348/
[1] A natural construction for the real numbers, Elem. Math., Volume 76 (2021) no. 3, pp. 89-105 | DOI | MR | Zbl
[2] Non-commutative Barge-Ghys quasimorphisms, 2023 | arXiv
[3] On Ulam stability, Israel J. Math., Volume 193 (2013) no. 1, pp. 109-129 | DOI | MR | Zbl
[4] scl, MSJ Memoirs, 20, Mathematical Society of Japan, Tokyo, 2009, xii+209 pages | DOI | MR
[5] Operator algebraic approach to inverse and stability theorems for amenable groups, Mathematika, Volume 65 (2019) no. 1, pp. 98-118 | DOI | MR | Zbl
[6] Bounded cohomology of discrete groups, Mathematical Surveys and Monographs, 227, American Mathematical Society, Providence, RI, 2017, xvi+193 pages | DOI | MR
[7] On quasihomomorphisms with noncommutative targets, Geom. Funct. Anal., Volume 26 (2016) no. 2, pp. 478-519 | DOI | MR | Zbl
[8] Inverse and stability theorems for approximate representations of finite groups, Sbornik: Mathematics, Volume 208 (2017) no. 12, p. 1784 | DOI | Zbl
[9] On -representations, Israel J. Math., Volume 43 (1982) no. 4, pp. 315-323 | DOI | MR
[10] Approximate cohomology, Selecta Math. (N.S.), Volume 24 (2018) no. 1, pp. 499-509 | DOI | MR | Zbl
[11] Constructing the completion of a field using Quasimorphisms, p-Adic Numbers Ultrametric Anal. Appl., Volume 11 (2019) no. 4, pp. 335-337 | DOI | MR | Zbl
[12] What isa quasi-morphism?, Notices Amer. Math. Soc., Volume 51 (2004) no. 2, pp. 208-209 | MR | Zbl
[13] Continuous bounded cohomology of locally compact groups, Lecture Notes in Mathematics, 1758, Springer-Verlag, Berlin, 2001, x+214 pages | DOI | MR
[14] One-quasihomomorphisms from the integers into symmetric matrices, 2023 | arXiv
[15] An efficient construction of real numbers, Austral. Math. Soc. Gaz., Volume 12 (1985) no. 3, pp. 57-58 | MR
[16] Finite approximations to Lie groups, Ann. of Math. (2), Volume 39 (1938) no. 1, pp. 105-111 | DOI | MR | Zbl
[17] A collection of mathematical problems, Interscience Tracts in Pure and Applied Mathematics, no. 8, Interscience Publishers, New York-London, 1960, xiii+150 pages | MR
Cited by Sources: