Recently, Masuda-Sato and Precup-Sommers independently proved an LLT version of the Shareshian-Wachs conjecture, which says that the Frobenius characteristics of the cohomology of the twin manifolds of regular semisimple Hessenberg varieties are unicellular LLT polynomials. The purpose of this paper is to study the geometry of twin manifolds and we prove that they are related by explicit blowups and fiber bundle maps. Upon taking their cohomology, we obtain a direct proof of the modular law which establishes the LLT Shareshian-Wachs conjecture.
Revised:
Accepted:
Published online:
Keywords: Hessenberg varieties, twin manifolds, unicellular LLT polynomials, Shareshian-Wachs conjecture, modular law
Kiem, Young-Hoon 1; Lee, Donggun 2

@article{ALCO_2024__7_3_861_0, author = {Kiem, Young-Hoon and Lee, Donggun}, title = {Geometry of the twin manifolds of regular semisimple {Hessenberg} varieties and unicellular {LLT} polynomials}, journal = {Algebraic Combinatorics}, pages = {861--885}, publisher = {The Combinatorics Consortium}, volume = {7}, number = {3}, year = {2024}, doi = {10.5802/alco.349}, language = {en}, url = {https://alco.centre-mersenne.org/articles/10.5802/alco.349/} }
TY - JOUR AU - Kiem, Young-Hoon AU - Lee, Donggun TI - Geometry of the twin manifolds of regular semisimple Hessenberg varieties and unicellular LLT polynomials JO - Algebraic Combinatorics PY - 2024 SP - 861 EP - 885 VL - 7 IS - 3 PB - The Combinatorics Consortium UR - https://alco.centre-mersenne.org/articles/10.5802/alco.349/ DO - 10.5802/alco.349 LA - en ID - ALCO_2024__7_3_861_0 ER -
%0 Journal Article %A Kiem, Young-Hoon %A Lee, Donggun %T Geometry of the twin manifolds of regular semisimple Hessenberg varieties and unicellular LLT polynomials %J Algebraic Combinatorics %D 2024 %P 861-885 %V 7 %N 3 %I The Combinatorics Consortium %U https://alco.centre-mersenne.org/articles/10.5802/alco.349/ %R 10.5802/alco.349 %G en %F ALCO_2024__7_3_861_0
Kiem, Young-Hoon; Lee, Donggun. Geometry of the twin manifolds of regular semisimple Hessenberg varieties and unicellular LLT polynomials. Algebraic Combinatorics, Volume 7 (2024) no. 3, pp. 861-885. doi : 10.5802/alco.349. https://alco.centre-mersenne.org/articles/10.5802/alco.349/
[1] The cohomology rings of regular nilpotent Hessenberg varieties in Lie type A, Int. Math. Res. Not. IMRN (2019) no. 17, pp. 5316-5388 | DOI | MR | Zbl
[2] A survey of recent developments on Hessenberg varieties, Schubert calculus and its applications in combinatorics and representation theory (Springer Proc. Math. Stat.), Volume 332, Springer, Singapore, 2020, pp. 251-279 | DOI | MR | Zbl
[3] Chromatic symmetric functions from the modular law, J. Combin. Theory Ser. A, Volume 180 (2021), Paper no. 105407, 30 pages | DOI | MR | Zbl
[4] A symmetric function of increasing forests, Forum Math. Sigma, Volume 9 (2021), Paper no. e35, 21 pages | DOI | MR | Zbl
[5] LLT polynomials, elementary symmetric functions and melting lollipops, J. Algebraic Combin., Volume 53 (2021) no. 2, pp. 299-325 | DOI | MR | Zbl
[6] Manifolds of isospectral matrices and Hessenberg varieties, Int. Math. Res. Not. IMRN (2021) no. 21, pp. 16671-16692 | DOI | MR | Zbl
[7] A convexity theorem for isospectral manifolds of Jacobi matrices in a compact Lie algebra, Duke Math. J., Volume 61 (1990) no. 1, pp. 41-65 | DOI | MR | Zbl
[8] Unit interval orders and the dot action on the cohomology of regular semisimple Hessenberg varieties, Adv. Math., Volume 329 (2018), pp. 955-1001 | DOI | MR | Zbl
[9] A proof of the shuffle conjecture, J. Amer. Math. Soc., Volume 31 (2018) no. 3, pp. 661-697 | DOI | MR | Zbl
[10] Convex polytopes, Coxeter orbifolds and torus actions, Duke Math. J., Volume 62 (1991) no. 2, pp. 417-451 | DOI | MR | Zbl
[11] Hessenberg varieties, Trans. Amer. Math. Soc., Volume 332 (1992) no. 2, pp. 529-534 | DOI | MR | Zbl
[12] Equivariant cohomology, Koszul duality, and the localization theorem, Invent. Math., Volume 131 (1998) no. 1, pp. 25-83 | DOI | MR | Zbl
[13] A modular relation for the chromatic symmetric functions of (3+1)-free posets, 2013 | arXiv
[14] A second proof of the Shareshian–Wachs conjecture, by way of a new Hopf algebra, 2016 | arXiv
[15] Combinatorics, symmetric functions, and Hilbert schemes, Current developments in mathematics, 2002, Int. Press, Somerville, MA, 2003, pp. 39-111 | MR | Zbl
[16] Birational geometry of generalized Hessenberg varieties and the generalized Shareshian-Wachs conjecture, J. Combin. Theory Ser. A, Volume 206 (2024), Paper no. 105884, 45 pages | DOI | MR | Zbl
[17] Introduction to GKM theory, Trends in Mathematics – New Series (Proceedings of ASARC Workshop), Volume 11, Information Center for Mathematical Sciences, KAIST (2009) no. 2, pp. 113-129 https://mathsci.kaist.ac.kr/~31871/ASARC_workshop.pdf
[18] Ribbon tableaux, Hall-Littlewood functions, quantum affine algebras, and unipotent varieties, J. Math. Phys., Volume 38 (1997) no. 2, pp. 1041-1068 | DOI | MR | Zbl
[19] Linear relations on LLT polynomials and their k-Schur positivity for , J. Algebraic Combin., Volume 53 (2021) no. 4, pp. 973-990 | DOI | MR | Zbl
[20] Symmetric functions and Hall polynomials, Oxford Classic Texts in the Physical Sciences, The Clarendon Press, Oxford University Press, New York, 2015, xii+475 pages | MR
[21] Unicellular LLT polynomials and twins of regular semisimple Hessenberg varieties, Int. Math. Res. Not. IMRN (2024) no. 2, pp. 964-996 | DOI | MR | Zbl
[22] Perverse sheaves, nilpotent Hessenberg varieties, and the modular law, 2022 | arXiv
[23] Chromatic quasisymmetric functions, Adv. Math., Volume 295 (2016), pp. 497-551 | DOI | MR | Zbl
[24] A symmetric function generalization of the chromatic polynomial of a graph, Adv. Math., Volume 111 (1995) no. 1, pp. 166-194 | DOI | MR | Zbl
[25] On immanants of Jacobi-Trudi matrices and permutations with restricted position, J. Combin. Theory Ser. A, Volume 62 (1993) no. 2, pp. 261-279 | DOI | MR | Zbl
[26] The topology of isospectral manifolds of tridiagonal matrices, Duke Math. J., Volume 51 (1984) no. 4, pp. 981-996 | DOI | MR | Zbl
[27] Permutation actions on equivariant cohomology of flag varieties, Toric topology (Contemp. Math.), Volume 460, Amer. Math. Soc., Providence, RI, 2008, pp. 365-384 | DOI | MR | Zbl
Cited by Sources: