We determine when a permutation with cycle type admits a non-zero invariant vector in the irreducible representation of the symmetric group. We find that a majority of pairs have this property, with only a few simple exceptions.
Accepted:
Published online:
Keywords: locally invariant vectors, symmetric groups, representations
P., Amrutha 1; Prasad, Amritanshu 2, 3; S., Velmurugan 2, 3
@article{ALCO_2024__7_4_915_0, author = {P., Amrutha and Prasad, Amritanshu and S., Velmurugan}, title = {Existence of elementwise invariant vectors in representations of symmetric groups}, journal = {Algebraic Combinatorics}, pages = {915--929}, publisher = {The Combinatorics Consortium}, volume = {7}, number = {4}, year = {2024}, doi = {10.5802/alco.369}, language = {en}, url = {https://alco.centre-mersenne.org/articles/10.5802/alco.369/} }
TY - JOUR AU - P., Amrutha AU - Prasad, Amritanshu AU - S., Velmurugan TI - Existence of elementwise invariant vectors in representations of symmetric groups JO - Algebraic Combinatorics PY - 2024 SP - 915 EP - 929 VL - 7 IS - 4 PB - The Combinatorics Consortium UR - https://alco.centre-mersenne.org/articles/10.5802/alco.369/ DO - 10.5802/alco.369 LA - en ID - ALCO_2024__7_4_915_0 ER -
%0 Journal Article %A P., Amrutha %A Prasad, Amritanshu %A S., Velmurugan %T Existence of elementwise invariant vectors in representations of symmetric groups %J Algebraic Combinatorics %D 2024 %P 915-929 %V 7 %N 4 %I The Combinatorics Consortium %U https://alco.centre-mersenne.org/articles/10.5802/alco.369/ %R 10.5802/alco.369 %G en %F ALCO_2024__7_4_915_0
P., Amrutha; Prasad, Amritanshu; S., Velmurugan. Existence of elementwise invariant vectors in representations of symmetric groups. Algebraic Combinatorics, Volume 7 (2024) no. 4, pp. 915-929. doi : 10.5802/alco.369. https://alco.centre-mersenne.org/articles/10.5802/alco.369/
[1] Symmetric functions and Hall polynomials, Oxford Classic Texts in the Physical Sciences, Oxford University Press, 2015, xii+475 pages | MR
[2] Relations between cusp forms sharing Hecke eigenvalues, Represent. Theory, Volume 26 (2022), pp. 1063-1079 | DOI | Zbl
[3] The conjugacy action of and modules induced from centralisers, J. Algebraic Combin., Volume 48 (2018) no. 2, pp. 179-225 | DOI | MR | Zbl
[4] On conjugacy classes of containing all irreducibles, Israel J. Math., Volume 225 (2018) no. 1, pp. 321-342 | DOI | MR | Zbl
[5] On the existence of tableaux with given modular major index, Algebr. Comb., Volume 1 (2018) no. 1, pp. 3-21 | DOI | Numdam | MR | Zbl
[6] SageMath, the Sage Mathematics Software System (Version 10.2) (2023) https://www.sagemath.org (Accessed 2024-03-12)
[7] The minimal polynomials of powers of cycles in the ordinary representations of symmetric and alternating groups, J. Algebra Appl., Volume 20 (2021) no. 11, Paper no. 2150209, 18 pages | DOI | MR | Zbl
Cited by Sources: