Existence of elementwise invariant vectors in representations of symmetric groups
Algebraic Combinatorics, Volume 7 (2024) no. 4, pp. 915-929.

We determine when a permutation with cycle type μ admits a non-zero invariant vector in the irreducible representation V λ of the symmetric group. We find that a majority of pairs (λ,μ) have this property, with only a few simple exceptions.

Received:
Accepted:
Published online:
DOI: 10.5802/alco.369
Classification: 20C30, 05E10
Keywords: locally invariant vectors, symmetric groups, representations

P., Amrutha 1; Prasad, Amritanshu 2, 3; S., Velmurugan 2, 3

1 Chennai Mathematical Institute H1, SIPCOT IT Park Siruseri Kelambakkam 603103, India
2 The Institute of Mathematical Sciences CIT Campus, Taramani Chennai 600113, India
3 Homi Bhabha National Institute Anushakti Nagar, Mumbai 400094, India
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{ALCO_2024__7_4_915_0,
     author = {P., Amrutha and Prasad, Amritanshu and S., Velmurugan},
     title = {Existence of elementwise invariant vectors in representations of symmetric groups},
     journal = {Algebraic Combinatorics},
     pages = {915--929},
     publisher = {The Combinatorics Consortium},
     volume = {7},
     number = {4},
     year = {2024},
     doi = {10.5802/alco.369},
     language = {en},
     url = {https://alco.centre-mersenne.org/articles/10.5802/alco.369/}
}
TY  - JOUR
AU  - P., Amrutha
AU  - Prasad, Amritanshu
AU  - S., Velmurugan
TI  - Existence of elementwise invariant vectors in representations of symmetric groups
JO  - Algebraic Combinatorics
PY  - 2024
SP  - 915
EP  - 929
VL  - 7
IS  - 4
PB  - The Combinatorics Consortium
UR  - https://alco.centre-mersenne.org/articles/10.5802/alco.369/
DO  - 10.5802/alco.369
LA  - en
ID  - ALCO_2024__7_4_915_0
ER  - 
%0 Journal Article
%A P., Amrutha
%A Prasad, Amritanshu
%A S., Velmurugan
%T Existence of elementwise invariant vectors in representations of symmetric groups
%J Algebraic Combinatorics
%D 2024
%P 915-929
%V 7
%N 4
%I The Combinatorics Consortium
%U https://alco.centre-mersenne.org/articles/10.5802/alco.369/
%R 10.5802/alco.369
%G en
%F ALCO_2024__7_4_915_0
P., Amrutha; Prasad, Amritanshu; S., Velmurugan. Existence of elementwise invariant vectors in representations of symmetric groups. Algebraic Combinatorics, Volume 7 (2024) no. 4, pp. 915-929. doi : 10.5802/alco.369. https://alco.centre-mersenne.org/articles/10.5802/alco.369/

[1] Macdonald, I. G. Symmetric functions and Hall polynomials, Oxford Classic Texts in the Physical Sciences, Oxford University Press, 2015, xii+475 pages | MR

[2] Prasad, Dipendra; Raghunathan, Ravi Relations between cusp forms sharing Hecke eigenvalues, Represent. Theory, Volume 26 (2022), pp. 1063-1079 | DOI | Zbl

[3] Sundaram, Sheila The conjugacy action of S n and modules induced from centralisers, J. Algebraic Combin., Volume 48 (2018) no. 2, pp. 179-225 | DOI | MR | Zbl

[4] Sundaram, Sheila On conjugacy classes of S n containing all irreducibles, Israel J. Math., Volume 225 (2018) no. 1, pp. 321-342 | DOI | MR | Zbl

[5] Swanson, Joshua P. On the existence of tableaux with given modular major index, Algebr. Comb., Volume 1 (2018) no. 1, pp. 3-21 | DOI | Numdam | MR | Zbl

[6] The Sage Developers SageMath, the Sage Mathematics Software System (Version 10.2) (2023) https://www.sagemath.org (Accessed 2024-03-12)

[7] Yang, Nanying; Staroletov, Alexey M. The minimal polynomials of powers of cycles in the ordinary representations of symmetric and alternating groups, J. Algebra Appl., Volume 20 (2021) no. 11, Paper no. 2150209, 18 pages | DOI | MR | Zbl

Cited by Sources: