We give a combinatorial interpretation for certain cluster variables in Grassmannian cluster algebras in terms of double and triple dimer configurations. More specifically, we examine several cluster variables that may be written as degree two or degree three polynomials in terms of Plücker coordinates, and give generating functions for their images under the twist map - a cluster algebra automorphism introduced in [1]. The generating functions range over certain double or triple dimer configurations on an associated plabic graph, which we describe using particular non-crossing matchings or webs (as in [13]), respectively. These connections shed light on a conjecture appearing in [3], extend the concept of web duality introduced in [9], and more broadly make headway on understanding Grassmannian cluster algebras for .
Revised:
Accepted:
Published online:
Keywords: cluster algebra, Grassmannian, dimers, webs
Elkin, Moriah 1; Musiker, Gregg 2; Wright, Kayla 2
@article{ALCO_2024__7_5_1347_0, author = {Elkin, Moriah and Musiker, Gregg and Wright, Kayla}, title = {Twists of $\mathrm{Gr}(3,n)$ {Cluster} {Variables} as {Double} and {Triple} {Dimer} {Partition} {Functions}}, journal = {Algebraic Combinatorics}, pages = {1347--1404}, publisher = {The Combinatorics Consortium}, volume = {7}, number = {5}, year = {2024}, doi = {10.5802/alco.376}, language = {en}, url = {https://alco.centre-mersenne.org/articles/10.5802/alco.376/} }
TY - JOUR AU - Elkin, Moriah AU - Musiker, Gregg AU - Wright, Kayla TI - Twists of $\mathrm{Gr}(3,n)$ Cluster Variables as Double and Triple Dimer Partition Functions JO - Algebraic Combinatorics PY - 2024 SP - 1347 EP - 1404 VL - 7 IS - 5 PB - The Combinatorics Consortium UR - https://alco.centre-mersenne.org/articles/10.5802/alco.376/ DO - 10.5802/alco.376 LA - en ID - ALCO_2024__7_5_1347_0 ER -
%0 Journal Article %A Elkin, Moriah %A Musiker, Gregg %A Wright, Kayla %T Twists of $\mathrm{Gr}(3,n)$ Cluster Variables as Double and Triple Dimer Partition Functions %J Algebraic Combinatorics %D 2024 %P 1347-1404 %V 7 %N 5 %I The Combinatorics Consortium %U https://alco.centre-mersenne.org/articles/10.5802/alco.376/ %R 10.5802/alco.376 %G en %F ALCO_2024__7_5_1347_0
Elkin, Moriah; Musiker, Gregg; Wright, Kayla. Twists of $\mathrm{Gr}(3,n)$ Cluster Variables as Double and Triple Dimer Partition Functions. Algebraic Combinatorics, Volume 7 (2024) no. 5, pp. 1347-1404. doi : 10.5802/alco.376. https://alco.centre-mersenne.org/articles/10.5802/alco.376/
[1] Parametrizations of canonical bases and totally positive matrices, Adv. Math., Volume 122 (1996) no. 1, pp. 49-149 | DOI | MR | Zbl
[2] Quantum affine algebras and Grassmannians, Math. Z., Volume 296 (2020) no. 3-4, pp. 1539-1583 | DOI | MR | Zbl
[3] Clustering cluster algebras with clusters, Adv. Theor. Math. Phys., Volume 27 (2023) no. 3, pp. 797-828 | DOI | MR | Zbl
[4] Tensor diagrams and cluster algebras, Adv. Math., Volume 300 (2016), pp. 717-787 | DOI | MR | Zbl
[5] Introduction to cluster algebras, chapters 1-3, 2016 | arXiv
[6] Introduction to cluster algebras, chapter 6, 2020 | arXiv
[7] Introduction to cluster algebras, chapter 7, 2021 | arXiv
[8] Cluster algebras. I. Foundations, J. Amer. Math. Soc., Volume 15 (2002) no. 2, pp. 497-529 | DOI | MR | Zbl
[9] From dimers to webs, Trans. Amer. Math. Soc., Volume 371 (2019) no. 9, pp. 6087-6124 | DOI | MR | Zbl
[10] Plabic tilings Applet, https://www.math.ucla.edu/~galashin/plabic.html
[11] Web bases for are not dual canonical, Pacific J. Math., Volume 188 (1999) no. 1, pp. 129-153 | DOI | MR | Zbl
[12] Applications of graphical condensation for enumerating matchings and tilings, Theoret. Comput. Sci., Volume 319 (2004) no. 1-3, pp. 29-57 | DOI | MR | Zbl
[13] Spiders for rank Lie algebras, Comm. Math. Phys., Volume 180 (1996) no. 1, pp. 109-151 | DOI | MR | Zbl
[14] Dimers, webs, and positroids, J. Lond. Math. Soc. (2), Volume 92 (2015) no. 3, pp. 633-656 | DOI | MR | Zbl
[15] Twists of Plücker coordinates as dimer partition functions, Comm. Math. Phys., Volume 341 (2016) no. 3, pp. 821-884 | DOI | MR | Zbl
[16] The twist for positroid varieties, Proc. Lond. Math. Soc. (3), Volume 115 (2017) no. 5, pp. 1014-1071 | DOI | MR | Zbl
[17] A non-crossing standard monomial theory, J. Algebra, Volume 324 (2010) no. 5, pp. 951-969 | DOI | MR | Zbl
[18] Total positivity, Grassmannians, and networks, 2006 | arXiv
[19] Matching polytopes, toric geometry, and the totally non-negative Grassmannian, J. Algebraic Combin., Volume 30 (2009) no. 2, pp. 173-191 | DOI | MR | Zbl
[20] Non-crossing tableaux, Ann. Comb., Volume 13 (2009) no. 3, pp. 323-339 | DOI | MR | Zbl
[21] Developers of the Sage Mathematics Software System (Version 8.9.beta4) (2019) (https://www.sagemath.org)
[22] Grassmannians and cluster algebras, Proc. London Math. Soc. (3), Volume 92 (2006) no. 2, pp. 345-380 | DOI | MR | Zbl
[23] Perfect matchings and the octahedron recurrence, J. Algebraic Combin., Volume 25 (2007) no. 3, pp. 309-348 | DOI | MR | Zbl
[24] A formula for Plücker coordinates associated with a planar network, Int. Math. Res. Not. IMRN (2008), Paper no. rnn 081, 19 pages | DOI | MR | Zbl
[25] A simple bijection between standard tableaux and irreducible webs for , J. Algebraic Combin., Volume 35 (2012) no. 4, pp. 611-632 | DOI | MR | Zbl
Cited by Sources: