Twists of Gr(3,n) Cluster Variables as Double and Triple Dimer Partition Functions
Algebraic Combinatorics, Volume 7 (2024) no. 5, pp. 1347-1404.

We give a combinatorial interpretation for certain cluster variables in Grassmannian cluster algebras in terms of double and triple dimer configurations. More specifically, we examine several Gr(3,n) cluster variables that may be written as degree two or degree three polynomials in terms of Plücker coordinates, and give generating functions for their images under the twist map - a cluster algebra automorphism introduced in [1]. The generating functions range over certain double or triple dimer configurations on an associated plabic graph, which we describe using particular non-crossing matchings or webs (as in [13]), respectively. These connections shed light on a conjecture appearing in [3], extend the concept of web duality introduced in [9], and more broadly make headway on understanding Grassmannian cluster algebras for Gr(3,n).

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/alco.376
Classification: 13F60, 14M15, 05C70
Keywords: cluster algebra, Grassmannian, dimers, webs

Elkin, Moriah 1; Musiker, Gregg 2; Wright, Kayla 2

1 Cornell University, Ithaca, NY
2 University of Minnesota, Twin Cities, Minneapolis, MN
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{ALCO_2024__7_5_1347_0,
     author = {Elkin, Moriah and Musiker, Gregg and Wright, Kayla},
     title = {Twists of $\mathrm{Gr}(3,n)$ {Cluster} {Variables} as {Double} and {Triple} {Dimer} {Partition} {Functions}},
     journal = {Algebraic Combinatorics},
     pages = {1347--1404},
     publisher = {The Combinatorics Consortium},
     volume = {7},
     number = {5},
     year = {2024},
     doi = {10.5802/alco.376},
     language = {en},
     url = {https://alco.centre-mersenne.org/articles/10.5802/alco.376/}
}
TY  - JOUR
AU  - Elkin, Moriah
AU  - Musiker, Gregg
AU  - Wright, Kayla
TI  - Twists of $\mathrm{Gr}(3,n)$ Cluster Variables as Double and Triple Dimer Partition Functions
JO  - Algebraic Combinatorics
PY  - 2024
SP  - 1347
EP  - 1404
VL  - 7
IS  - 5
PB  - The Combinatorics Consortium
UR  - https://alco.centre-mersenne.org/articles/10.5802/alco.376/
DO  - 10.5802/alco.376
LA  - en
ID  - ALCO_2024__7_5_1347_0
ER  - 
%0 Journal Article
%A Elkin, Moriah
%A Musiker, Gregg
%A Wright, Kayla
%T Twists of $\mathrm{Gr}(3,n)$ Cluster Variables as Double and Triple Dimer Partition Functions
%J Algebraic Combinatorics
%D 2024
%P 1347-1404
%V 7
%N 5
%I The Combinatorics Consortium
%U https://alco.centre-mersenne.org/articles/10.5802/alco.376/
%R 10.5802/alco.376
%G en
%F ALCO_2024__7_5_1347_0
Elkin, Moriah; Musiker, Gregg; Wright, Kayla. Twists of $\mathrm{Gr}(3,n)$ Cluster Variables as Double and Triple Dimer Partition Functions. Algebraic Combinatorics, Volume 7 (2024) no. 5, pp. 1347-1404. doi : 10.5802/alco.376. https://alco.centre-mersenne.org/articles/10.5802/alco.376/

[1] Berenstein, Arkady; Fomin, Sergey; Zelevinsky, Andrei Parametrizations of canonical bases and totally positive matrices, Adv. Math., Volume 122 (1996) no. 1, pp. 49-149 | DOI | MR | Zbl

[2] Chang, Wen; Duan, Bing; Fraser, Chris; Li, Jian-Rong Quantum affine algebras and Grassmannians, Math. Z., Volume 296 (2020) no. 3-4, pp. 1539-1583 | DOI | MR | Zbl

[3] Cheung, Man-Wai; Dechant, Pierre-Philippe; He, Yang-Hui; Heyes, Elli; Hirst, Edward; Li, Jian-Rong Clustering cluster algebras with clusters, Adv. Theor. Math. Phys., Volume 27 (2023) no. 3, pp. 797-828 | DOI | MR | Zbl

[4] Fomin, Sergey; Pylyavskyy, Pavlo Tensor diagrams and cluster algebras, Adv. Math., Volume 300 (2016), pp. 717-787 | DOI | MR | Zbl

[5] Fomin, Sergey; Williams, Lauren; Zelevinsky, Andrei Introduction to cluster algebras, chapters 1-3, 2016 | arXiv

[6] Fomin, Sergey; Williams, Lauren; Zelevinsky, Andrei Introduction to cluster algebras, chapter 6, 2020 | arXiv

[7] Fomin, Sergey; Williams, Lauren; Zelevinsky, Andrei Introduction to cluster algebras, chapter 7, 2021 | arXiv

[8] Fomin, Sergey; Zelevinsky, Andrei Cluster algebras. I. Foundations, J. Amer. Math. Soc., Volume 15 (2002) no. 2, pp. 497-529 | DOI | MR | Zbl

[9] Fraser, Chris; Lam, Thomas; Le, Ian From dimers to webs, Trans. Amer. Math. Soc., Volume 371 (2019) no. 9, pp. 6087-6124 | DOI | MR | Zbl

[10] Galashin, Pavel Plabic tilings Applet, https://www.math.ucla.edu/~galashin/plabic.html

[11] Khovanov, Mikhail; Kuperberg, Greg Web bases for sl (3) are not dual canonical, Pacific J. Math., Volume 188 (1999) no. 1, pp. 129-153 | DOI | MR | Zbl

[12] Kuo, Eric H. Applications of graphical condensation for enumerating matchings and tilings, Theoret. Comput. Sci., Volume 319 (2004) no. 1-3, pp. 29-57 | DOI | MR | Zbl

[13] Kuperberg, Greg Spiders for rank 2 Lie algebras, Comm. Math. Phys., Volume 180 (1996) no. 1, pp. 109-151 | DOI | MR | Zbl

[14] Lam, Thomas Dimers, webs, and positroids, J. Lond. Math. Soc. (2), Volume 92 (2015) no. 3, pp. 633-656 | DOI | MR | Zbl

[15] Marsh, R. J.; Scott, J. S. Twists of Plücker coordinates as dimer partition functions, Comm. Math. Phys., Volume 341 (2016) no. 3, pp. 821-884 | DOI | MR | Zbl

[16] Muller, Greg; Speyer, David E. The twist for positroid varieties, Proc. Lond. Math. Soc. (3), Volume 115 (2017) no. 5, pp. 1014-1071 | DOI | MR | Zbl

[17] Petersen, T. Kyle; Pylyavskyy, Pavlo; Speyer, David E. A non-crossing standard monomial theory, J. Algebra, Volume 324 (2010) no. 5, pp. 951-969 | DOI | MR | Zbl

[18] Postnikov, Alexander Total positivity, Grassmannians, and networks, 2006 | arXiv

[19] Postnikov, Alexander; Speyer, David; Williams, Lauren Matching polytopes, toric geometry, and the totally non-negative Grassmannian, J. Algebraic Combin., Volume 30 (2009) no. 2, pp. 173-191 | DOI | MR | Zbl

[20] Pylyavskyy, Pavlo Non-crossing tableaux, Ann. Comb., Volume 13 (2009) no. 3, pp. 323-339 | DOI | MR | Zbl

[21] SageMath Developers of the Sage Mathematics Software System (Version 8.9.beta4) (2019) (https://www.sagemath.org)

[22] Scott, Joshua S. Grassmannians and cluster algebras, Proc. London Math. Soc. (3), Volume 92 (2006) no. 2, pp. 345-380 | DOI | MR | Zbl

[23] Speyer, David E. Perfect matchings and the octahedron recurrence, J. Algebraic Combin., Volume 25 (2007) no. 3, pp. 309-348 | DOI | MR | Zbl

[24] Talaska, Kelli A formula for Plücker coordinates associated with a planar network, Int. Math. Res. Not. IMRN (2008), Paper no. rnn 081, 19 pages | DOI | MR | Zbl

[25] Tymoczko, Julianna A simple bijection between standard 3×n tableaux and irreducible webs for 𝔰𝔩 3 , J. Algebraic Combin., Volume 35 (2012) no. 4, pp. 611-632 | DOI | MR | Zbl

Cited by Sources: