The concept of scattered polynomials is generalized to those of exceptional scattered sequences which are shown to be the natural algebraic counterpart of -linear MRD codes. The first infinite family in the first nontrivial case is also provided and equivalence issues are considered. As a byproduct, a new infinite family of MRD codes is obtained.
Revised:
Accepted:
Published online:
Keywords: Scattered polynomials, linearized polynomials, MRD codes, finite fields
Bartoli, Daniele 1; Marino, Giuseppe 2; Neri, Alessandro 3; Vicino, Lara 4
@article{ALCO_2024__7_5_1405_0, author = {Bartoli, Daniele and Marino, Giuseppe and Neri, Alessandro and Vicino, Lara}, title = {Exceptional scattered sequences}, journal = {Algebraic Combinatorics}, pages = {1405--1431}, publisher = {The Combinatorics Consortium}, volume = {7}, number = {5}, year = {2024}, doi = {10.5802/alco.377}, language = {en}, url = {https://alco.centre-mersenne.org/articles/10.5802/alco.377/} }
TY - JOUR AU - Bartoli, Daniele AU - Marino, Giuseppe AU - Neri, Alessandro AU - Vicino, Lara TI - Exceptional scattered sequences JO - Algebraic Combinatorics PY - 2024 SP - 1405 EP - 1431 VL - 7 IS - 5 PB - The Combinatorics Consortium UR - https://alco.centre-mersenne.org/articles/10.5802/alco.377/ DO - 10.5802/alco.377 LA - en ID - ALCO_2024__7_5_1405_0 ER -
%0 Journal Article %A Bartoli, Daniele %A Marino, Giuseppe %A Neri, Alessandro %A Vicino, Lara %T Exceptional scattered sequences %J Algebraic Combinatorics %D 2024 %P 1405-1431 %V 7 %N 5 %I The Combinatorics Consortium %U https://alco.centre-mersenne.org/articles/10.5802/alco.377/ %R 10.5802/alco.377 %G en %F ALCO_2024__7_5_1405_0
Bartoli, Daniele; Marino, Giuseppe; Neri, Alessandro; Vicino, Lara. Exceptional scattered sequences. Algebraic Combinatorics, Volume 7 (2024) no. 5, pp. 1405-1431. doi : 10.5802/alco.377. https://alco.centre-mersenne.org/articles/10.5802/alco.377/
[1] Linear cutting blocking sets and minimal codes in the rank metric, J. Combin. Theory Ser. A, Volume 192 (2022), Paper no. 105658, 44 pages | DOI | MR | Zbl
[2] The Critical Theorem for -Polymatroids, 2023 | arXiv
[3] Hasse-Weil type theorems and relevant classes of polynomial functions, Surveys in combinatorics 2021 (London Math. Soc. Lecture Note Ser.), Volume 470, Cambridge Univ. Press, Cambridge, 2021, pp. 43-101 | DOI | MR | Zbl
[4] Evasive subspaces, J. Combin. Des., Volume 29 (2021) no. 8, pp. 533-551 | DOI | MR | Zbl
[5] Maximum scattered linear sets and complete caps in Galois spaces, Combinatorica, Volume 38 (2018) no. 2, pp. 255-278 | DOI | MR | Zbl
[6] Towards the classification of exceptional scattered polynomials, 2022 | arXiv
[7] New MRD codes from linear cutting blocking sets, Ann. Mat. Pura Appl. (4), Volume 202 (2023) no. 1, pp. 115-142 | DOI | MR | Zbl
[8] On the classification of exceptional scattered polynomials, J. Combin. Theory Ser. A, Volume 179 (2021), Paper no. 105386, 28 pages | DOI | MR | Zbl
[9] A new family of maximum scattered linear sets in , Ars Math. Contemp., Volume 19 (2020) no. 1, pp. 125-145 | DOI | MR | Zbl
[10] Exceptional scattered polynomials, J. Algebra, Volume 509 (2018), pp. 507-534 | DOI | MR | Zbl
[11] Asymptotics of Moore exponent sets, J. Combin. Theory Ser. A, Volume 175 (2020), Paper no. 105281, 18 pages | DOI | MR | Zbl
[12] Linear maximum rank distance codes of exceptional type, IEEE Trans. Inform. Theory, Volume 69 (2023) no. 6, pp. 3627-3636 | DOI | MR | Zbl
[13] Scattered spaces with respect to a spread in , Geom. Dedicata, Volume 81 (2000) no. 1-3, pp. 231-243 | DOI | MR | Zbl
[14] A new family of MRD-codes, Linear Algebra Appl., Volume 548 (2018), pp. 203-220 | DOI | MR | Zbl
[15] Maximum scattered linear sets and MRD-codes, J. Algebraic Combin., Volume 46 (2017) no. 3-4, pp. 517-531 | DOI | MR | Zbl
[16] Generalising the scattered property of subspaces, Combinatorica, Volume 41 (2021) no. 2, pp. 237-262 | DOI | MR | Zbl
[17] New maximum scattered linear sets of the projective line, Finite Fields Appl., Volume 54 (2018), pp. 133-150 | DOI | MR | Zbl
[18] Bilinear forms over a finite field, with applications to coding theory, J. Combin. Theory Ser. A, Volume 25 (1978) no. 3, pp. 226-241 | DOI | MR | Zbl
[19] Subspace evasive sets, STOC’12—Proceedings of the 2012 ACM Symposium on Theory of Computing, ACM, New York (2012), pp. 351-358 | DOI | MR | Zbl
[20] Exceptional scatteredness in prime degree, J. Algebra, Volume 565 (2021), pp. 691-701 | DOI | MR | Zbl
[21] Theory of codes with maximum rank distance, Problemy Peredachi Informatsii, Volume 21 (1985) no. 1, pp. 3-16 | MR | Zbl
[22] Ideals over a noncommutative ring and their application in cryptology, Advances in cryptology—EUROCRYPT ’91 (Brighton, 1991) (Lecture Notes in Comput. Sci.), Volume 547, Springer, Berlin, 1991, pp. 482-489 | DOI | MR | Zbl
[23] Densities of codes of various linearity degrees in translation-invariant metric spaces, Des. Codes Cryptogr., Volume 92 (2024) no. 3, pp. 609-637 | DOI | MR | Zbl
[24] Linear-algebraic list decoding of folded Reed-Solomon codes, 26th Annual IEEE Conference on Computational Complexity, IEEE Computer Soc., Los Alamitos, CA, 2011, pp. 77-85 | MR
[25] Explicit list-decodable rank-metric and subspace codes via subspace designs, IEEE Trans. Inform. Theory, Volume 62 (2016) no. 5, pp. 2707-2718 | DOI | MR | Zbl
[26] Algebraic geometry, Graduate Texts in Mathematics, No. 52, Springer-Verlag, New York-Heidelberg, 1977, xvi+496 pages | DOI | MR
[27] Algebraic curves over a finite field, Princeton Series in Applied Mathematics, Princeton University Press, Princeton, NJ, 2008, xx+696 pages | DOI | MR
[28] Solving over finite fields, Finite Fields Appl., Volume 70 (2021), Paper no. 101797, 16 pages | DOI | MR | Zbl
[29] The new construction of rank codes, Proceedings. International Symposium on Information Theory, 2005. ISIT 2005., IEEE, 2005, pp. 2105-2108 | DOI
[30] A new rank metric codes based encryption scheme, Post-quantum cryptography (Lecture Notes in Comput. Sci.), Volume 10346, Springer, Cham, 2017, pp. 3-17 | DOI | MR | Zbl
[31] A large family of maximum scattered linear sets of and their associated MRD codes, Combinatorica, Volume 43 (2023) no. 4, pp. 681-716 | DOI | MR | Zbl
[32] Linear sets and MRD-codes arising from a class of scattered linearized polynomials, J. Algebraic Combin., Volume 53 (2021) no. 3, pp. 639-661 | DOI | MR | Zbl
[33] A geometric characterisation of linear -blocking sets, J. Geom., Volume 74 (2002) no. 1-2, pp. 120-122 | DOI | MR | Zbl
[34] Blocking sets of size , J. Combin. Theory Ser. A, Volume 90 (2000) no. 1, pp. 148-158 | DOI | MR | Zbl
[35] Translation ovoids of orthogonal polar spaces, Forum Math., Volume 16 (2004) no. 5, pp. 663-669 | DOI | MR | Zbl
[36] Generalized twisted Gabidulin codes, J. Combin. Theory Ser. A, Volume 159 (2018), pp. 79-106 | DOI | MR | Zbl
[37] MRD-codes arising from the trinomial , Linear Algebra Appl., Volume 591 (2020), pp. 99-114 | DOI | MR | Zbl
[38] Evasive subspaces, generalized rank weights and near MRD codes, Discrete Math., Volume 346 (2023) no. 12, Paper no. 113605, 18 pages | DOI | MR | Zbl
[39] A characterization of the number of roots of linearized and projective polynomials in the field of coefficients, Finite Fields Appl., Volume 57 (2019), pp. 68-91 | DOI | MR
[40] On the genericity of maximum rank distance and Gabidulin codes, Des. Codes Cryptogr., Volume 86 (2018) no. 2, pp. 341-363 | DOI | MR | Zbl
[41] Extending two families of maximum rank distance codes, Finite Fields Appl., Volume 81 (2022), Paper no. 102045, 31 pages | DOI | MR | Zbl
[42] Linear sets in finite projective spaces, Discrete Math., Volume 310 (2010) no. 22, pp. 3096-3107 | DOI | MR | Zbl
[43] Divisible linear rank metric codes, IEEE Trans. Inform. Theory, Volume 69 (2023) no. 7, pp. 4528-4536 | DOI | MR | Zbl
[44] Pseudorandom sets and explicit constructions of Ramsey graphs, Complexity of computations and proofs (Quad. Mat.), Volume 13, Dept. Math., Seconda Univ. Napoli, Caserta, 2004, pp. 327-346 | MR | Zbl
[45] A geometric approach to rank metric codes and a classification of constant weight codes, Des. Codes Cryptogr., Volume 88 (2020) no. 7, pp. 1331-1348 | DOI | MR | Zbl
[46] A new family of linear maximum rank distance codes, Adv. Math. Commun., Volume 10 (2016) no. 3, pp. 475-488 | DOI | MR | Zbl
[47] A rank-metric approach to error control in random network coding, IEEE Trans. Inform. Theory, Volume 54 (2008) no. 9, pp. 3951-3967 | DOI | MR | Zbl
[48] Algebraic function fields and codes, Graduate Texts in Mathematics, 254, Springer-Verlag, Berlin, 2009, xiv+355 pages | DOI | MR
[49] The geometry of the classical groups, Sigma Series in Pure Mathematics, 9, Heldermann Verlag, Berlin, 1992, xii+229 pages | MR
[50] A condition for scattered linearized polynomials involving Dickson matrices, J. Geom., Volume 110 (2019) no. 3, Paper no. 50, 9 pages | DOI | MR | Zbl
[51] Vertex properties of maximum scattered linear sets of , Discrete Math., Volume 343 (2020) no. 5, Paper no. 111800, 14 pages | DOI | MR | Zbl
[52] Scattered subspaces and related codes, Des. Codes Cryptogr., Volume 89 (2021) no. 8, pp. 1853-1873 | DOI | MR | Zbl
Cited by Sources: