The solution of Shareshian-Wachs conjecture by Brosnan-Chow and Guay-Paquet tied the graded chromatic symmetric functions on indifference graphs (or unit interval graphs) and the cohomology of regular semisimple Hessenberg varieties with the dot action. A similar result holds between unicellular LLT polynomials and twins of regular semisimple Hessenberg varieties. A recent result by Abreu-Nigro enabled us to prove these results by showing the modular law for the geometrical objects, and this is indeed done by Precup-Sommers and Kiem-Lee. In this paper, we give elementary and simpler proofs to the modular law through GKM theory.
Revised:
Accepted:
Published online:
Keywords: Hessenberg variety, torus action, twin, GKM theory, equivariant cohomology, modular law, chromatic symmetric function, unicellular LLT polynomial
Horiguchi, Tatsuya 1; Masuda, Mikiya 2; Sato, Takashi 2
@article{ALCO_2024__7_5_1433_0, author = {Horiguchi, Tatsuya and Masuda, Mikiya and Sato, Takashi}, title = {Modular law through {GKM} theory}, journal = {Algebraic Combinatorics}, pages = {1433--1451}, publisher = {The Combinatorics Consortium}, volume = {7}, number = {5}, year = {2024}, doi = {10.5802/alco.380}, language = {en}, url = {https://alco.centre-mersenne.org/articles/10.5802/alco.380/} }
TY - JOUR AU - Horiguchi, Tatsuya AU - Masuda, Mikiya AU - Sato, Takashi TI - Modular law through GKM theory JO - Algebraic Combinatorics PY - 2024 SP - 1433 EP - 1451 VL - 7 IS - 5 PB - The Combinatorics Consortium UR - https://alco.centre-mersenne.org/articles/10.5802/alco.380/ DO - 10.5802/alco.380 LA - en ID - ALCO_2024__7_5_1433_0 ER -
%0 Journal Article %A Horiguchi, Tatsuya %A Masuda, Mikiya %A Sato, Takashi %T Modular law through GKM theory %J Algebraic Combinatorics %D 2024 %P 1433-1451 %V 7 %N 5 %I The Combinatorics Consortium %U https://alco.centre-mersenne.org/articles/10.5802/alco.380/ %R 10.5802/alco.380 %G en %F ALCO_2024__7_5_1433_0
Horiguchi, Tatsuya; Masuda, Mikiya; Sato, Takashi. Modular law through GKM theory. Algebraic Combinatorics, Volume 7 (2024) no. 5, pp. 1433-1451. doi : 10.5802/alco.380. https://alco.centre-mersenne.org/articles/10.5802/alco.380/
[1] Chromatic symmetric functions from the modular law, J. Combin. Theory Ser. A, Volume 180 (2021), Paper no. 105407, 30 pages | DOI | MR | Zbl
[2] A symmetric function of increasing forests, Forum Math. Sigma, Volume 9 (2021), Paper no. e35, 21 pages | DOI | MR | Zbl
[3] An update on Haiman’s conjectures, 2022 | arXiv
[4] LLT polynomials, elementary symmetric functions and melting lollipops, J. Algebraic Combin., Volume 53 (2021) no. 2, pp. 299-325 | DOI | MR | Zbl
[5] Manifolds of isospectral matrices and Hessenberg varieties, Int. Math. Res. Not. IMRN (2021) no. 21, pp. 16671-16692 | DOI | MR | Zbl
[6] Unit interval orders and the dot action on the cohomology of regular semisimple Hessenberg varieties, Adv. Math., Volume 329 (2018), pp. 955-1001 | DOI | MR | Zbl
[7] A proof of the shuffle conjecture, J. Amer. Math. Soc., Volume 31 (2018) no. 3, pp. 661-697 | DOI | MR | Zbl
[8] Hessenberg varieties, Trans. Amer. Math. Soc., Volume 332 (1992) no. 2, pp. 529-534 | DOI | MR | Zbl
[9] Equivariant cohomology, Koszul duality, and the localization theorem, Invent. Math., Volume 131 (1998) no. 1, pp. 25-83 | DOI | MR | Zbl
[10] A second proof of the Shareshian-Wachs conjecture, by way of a new Hopf algebra, 2016 | arXiv
[11] Equivariant de Rham theory and graphs, Asian J. Math., Volume 3 (1999) no. 1, pp. 49-76 | DOI | MR | Zbl
[12] 1-skeleta, Betti numbers, and equivariant cohomology, Duke Math. J., Volume 107 (2001) no. 2, pp. 283-349 | DOI | Zbl
[13] Birational geometry of generalized Hessenberg varieties and the generalized Shareshian-Wachs conjecture, J. Combin. Theory Ser. A, Volume 206 (2024), Paper no. 105884, 45 pages | DOI | MR | Zbl
[14] Geometry of the twin manifolds of regular semisimple Hessenberg varieties and unicellular LLT polynomials, Algebr. Comb., Volume 7 (2024) no. 3, pp. 861-885 | MR | Zbl
[15] Ribbon tableaux, Hall-Littlewood functions, quantum affine algebras, and unipotent varieties, J. Math. Phys., Volume 38 (1997) no. 2, pp. 1041-1068 | DOI | MR | Zbl
[16] Unicellular LLT polynomials and twins of regular semisimple Hessenberg varieties, Int. Math. Res. Not. IMRN (2024) no. 2, pp. 964-996 | DOI | MR | Zbl
[17] Perverse sheaves, nilpotent Hessenberg varieties, and the modular law, 2022 | arXiv
[18] Chromatic quasisymmetric functions, Adv. Math., Volume 295 (2016), pp. 497-551 | DOI | MR | Zbl
[19] Permutation actions on equivariant cohomology of flag varieties, Toric topology (Contemp. Math.), Volume 460, Amer. Math. Soc., Providence, RI, 2008, pp. 365-384 | DOI | MR | Zbl
Cited by Sources: