Modular law through GKM theory
Algebraic Combinatorics, Volume 7 (2024) no. 5, pp. 1433-1451.

The solution of Shareshian-Wachs conjecture by Brosnan-Chow and Guay-Paquet tied the graded chromatic symmetric functions on indifference graphs (or unit interval graphs) and the cohomology of regular semisimple Hessenberg varieties with the dot action. A similar result holds between unicellular LLT polynomials and twins of regular semisimple Hessenberg varieties. A recent result by Abreu-Nigro enabled us to prove these results by showing the modular law for the geometrical objects, and this is indeed done by Precup-Sommers and Kiem-Lee. In this paper, we give elementary and simpler proofs to the modular law through GKM theory.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/alco.380
Classification: 57S12, 05A05, 14M15
Keywords: Hessenberg variety, torus action, twin, GKM theory, equivariant cohomology, modular law, chromatic symmetric function, unicellular LLT polynomial

Horiguchi, Tatsuya 1; Masuda, Mikiya 2; Sato, Takashi 2

1 National institute of technology Ube College 2-14-1 Tokiwadai Ube Yamaguchi 755-8555 Japan
2 Osaka Central Advanced Mathematical Institute Sumiyoshi-ku Osaka 558-8585 Japan
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{ALCO_2024__7_5_1433_0,
     author = {Horiguchi, Tatsuya and Masuda, Mikiya and Sato, Takashi},
     title = {Modular law through {GKM} theory},
     journal = {Algebraic Combinatorics},
     pages = {1433--1451},
     publisher = {The Combinatorics Consortium},
     volume = {7},
     number = {5},
     year = {2024},
     doi = {10.5802/alco.380},
     language = {en},
     url = {https://alco.centre-mersenne.org/articles/10.5802/alco.380/}
}
TY  - JOUR
AU  - Horiguchi, Tatsuya
AU  - Masuda, Mikiya
AU  - Sato, Takashi
TI  - Modular law through GKM theory
JO  - Algebraic Combinatorics
PY  - 2024
SP  - 1433
EP  - 1451
VL  - 7
IS  - 5
PB  - The Combinatorics Consortium
UR  - https://alco.centre-mersenne.org/articles/10.5802/alco.380/
DO  - 10.5802/alco.380
LA  - en
ID  - ALCO_2024__7_5_1433_0
ER  - 
%0 Journal Article
%A Horiguchi, Tatsuya
%A Masuda, Mikiya
%A Sato, Takashi
%T Modular law through GKM theory
%J Algebraic Combinatorics
%D 2024
%P 1433-1451
%V 7
%N 5
%I The Combinatorics Consortium
%U https://alco.centre-mersenne.org/articles/10.5802/alco.380/
%R 10.5802/alco.380
%G en
%F ALCO_2024__7_5_1433_0
Horiguchi, Tatsuya; Masuda, Mikiya; Sato, Takashi. Modular law through GKM theory. Algebraic Combinatorics, Volume 7 (2024) no. 5, pp. 1433-1451. doi : 10.5802/alco.380. https://alco.centre-mersenne.org/articles/10.5802/alco.380/

[1] Abreu, Alex; Nigro, Antonio Chromatic symmetric functions from the modular law, J. Combin. Theory Ser. A, Volume 180 (2021), Paper no. 105407, 30 pages | DOI | MR | Zbl

[2] Abreu, Alex; Nigro, Antonio A symmetric function of increasing forests, Forum Math. Sigma, Volume 9 (2021), Paper no. e35, 21 pages | DOI | MR | Zbl

[3] Abreu, Alex; Nigro, Antonio An update on Haiman’s conjectures, 2022 | arXiv

[4] Alexandersson, Per LLT polynomials, elementary symmetric functions and melting lollipops, J. Algebraic Combin., Volume 53 (2021) no. 2, pp. 299-325 | DOI | MR | Zbl

[5] Ayzenberg, Anton; Buchstaber, Victor Manifolds of isospectral matrices and Hessenberg varieties, Int. Math. Res. Not. IMRN (2021) no. 21, pp. 16671-16692 | DOI | MR | Zbl

[6] Brosnan, Patrick; Chow, Timothy Y. Unit interval orders and the dot action on the cohomology of regular semisimple Hessenberg varieties, Adv. Math., Volume 329 (2018), pp. 955-1001 | DOI | MR | Zbl

[7] Carlsson, Erik; Mellit, Anton A proof of the shuffle conjecture, J. Amer. Math. Soc., Volume 31 (2018) no. 3, pp. 661-697 | DOI | MR | Zbl

[8] De Mari, F.; Procesi, C.; Shayman, M. A. Hessenberg varieties, Trans. Amer. Math. Soc., Volume 332 (1992) no. 2, pp. 529-534 | DOI | MR | Zbl

[9] Goresky, Mark; Kottwitz, Robert; MacPherson, Robert Equivariant cohomology, Koszul duality, and the localization theorem, Invent. Math., Volume 131 (1998) no. 1, pp. 25-83 | DOI | MR | Zbl

[10] Guay-Paquet, Mathieu A second proof of the Shareshian-Wachs conjecture, by way of a new Hopf algebra, 2016 | arXiv

[11] Guillemin, V.; Zara, C. Equivariant de Rham theory and graphs, Asian J. Math., Volume 3 (1999) no. 1, pp. 49-76 | DOI | MR | Zbl

[12] Guillemin, V.; Zara, C. 1-skeleta, Betti numbers, and equivariant cohomology, Duke Math. J., Volume 107 (2001) no. 2, pp. 283-349 | DOI | Zbl

[13] Kiem, Young-Hoon; Lee, Donggun Birational geometry of generalized Hessenberg varieties and the generalized Shareshian-Wachs conjecture, J. Combin. Theory Ser. A, Volume 206 (2024), Paper no. 105884, 45 pages | DOI | MR | Zbl

[14] Kiem, Young-Hoon; Lee, Donggun Geometry of the twin manifolds of regular semisimple Hessenberg varieties and unicellular LLT polynomials, Algebr. Comb., Volume 7 (2024) no. 3, pp. 861-885 | MR | Zbl

[15] Lascoux, Alain; Leclerc, Bernard; Thibon, Jean-Yves Ribbon tableaux, Hall-Littlewood functions, quantum affine algebras, and unipotent varieties, J. Math. Phys., Volume 38 (1997) no. 2, pp. 1041-1068 | DOI | MR | Zbl

[16] Masuda, Mikiya; Sato, Takashi Unicellular LLT polynomials and twins of regular semisimple Hessenberg varieties, Int. Math. Res. Not. IMRN (2024) no. 2, pp. 964-996 | DOI | MR | Zbl

[17] Precup, Martha E.; Sommers, Eric Nathan Perverse sheaves, nilpotent Hessenberg varieties, and the modular law, 2022 | arXiv

[18] Shareshian, John; Wachs, Michelle L. Chromatic quasisymmetric functions, Adv. Math., Volume 295 (2016), pp. 497-551 | DOI | MR | Zbl

[19] Tymoczko, Julianna S. Permutation actions on equivariant cohomology of flag varieties, Toric topology (Contemp. Math.), Volume 460, Amer. Math. Soc., Providence, RI, 2008, pp. 365-384 | DOI | MR | Zbl

Cited by Sources: