We study the behavior of $h$-vectors associated to matroid complexes under weak maps, or inclusions of matroid polytopes. Specifically, we show that the $h$-vector of the order complex of the lattice of flats of a matroid is component-wise non-increasing under a weak map. This result extends to the flag $h$-vector. We note that the analogous result also holds for independence complexes and rank-preserving weak maps.
Revised:
Accepted:
Published online:
Keywords: matroids, weak maps, $h$-vectors
Liu, Gaku 1; Mason, Alexander 

@article{ALCO_2025__8_2_479_0, author = {Liu, Gaku and Mason, Alexander}, title = {$h$-vector inequalities under weak maps}, journal = {Algebraic Combinatorics}, pages = {479--493}, publisher = {The Combinatorics Consortium}, volume = {8}, number = {2}, year = {2025}, doi = {10.5802/alco.409}, language = {en}, url = {https://alco.centre-mersenne.org/articles/10.5802/alco.409/} }
TY - JOUR AU - Liu, Gaku AU - Mason, Alexander TI - $h$-vector inequalities under weak maps JO - Algebraic Combinatorics PY - 2025 SP - 479 EP - 493 VL - 8 IS - 2 PB - The Combinatorics Consortium UR - https://alco.centre-mersenne.org/articles/10.5802/alco.409/ DO - 10.5802/alco.409 LA - en ID - ALCO_2025__8_2_479_0 ER -
Liu, Gaku; Mason, Alexander. $h$-vector inequalities under weak maps. Algebraic Combinatorics, Volume 8 (2025) no. 2, pp. 479-493. doi : 10.5802/alco.409. https://alco.centre-mersenne.org/articles/10.5802/alco.409/
[1] Hodge theory for combinatorial geometries, Ann. of Math. (2), Volume 188 (2018) no. 2, pp. 381-452 | DOI | MR | Zbl
[2] Shellable and Cohen-Macaulay partially ordered sets, Trans. Amer. Math. Soc., Volume 260 (1980) no. 1, pp. 159-183 | DOI | MR | Zbl
[3] On the homology of geometric lattices, Algebra Universalis, Volume 14 (1982) no. 1, pp. 107-128 | DOI | MR
[4] The homology and shellability of matroids and geometric lattices, Matroid applications (Encyclopedia Math. Appl.), Volume 40, Cambridge Univ. Press, Cambridge, 1992, pp. 226-283 | DOI | MR | Zbl
[5] Singular Hodge theory for combinatorial geometries, 2020 | arXiv | Zbl
[6] Categorical valuative invariants of polyhedra and matroids, 2024 | arXiv
[7] Hilbert-Poincaré series of matroid Chow rings and intersection cohomology, Adv. Math., Volume 449 (2024), Paper no. 109733, 55 pages | DOI | MR | Zbl
[8] Valuative invariants for large classes of matroids, J. Lond. Math. Soc. (2), Volume 110 (2024) no. 3, Paper no. e12984, 86 pages | DOI | MR | Zbl
[9] Weak maps of combinatorial geometries, Trans. Amer. Math. Soc., Volume 206 (1975), pp. 247-279 | DOI | MR | Zbl
[10] Inequalities for the -vectors and flag -vectors of geometric lattices, Discrete Comput. Geom., Volume 32 (2004) no. 4, pp. 533-548 | DOI | MR | Zbl
[11] Matroid theory, Oxford Graduate Texts in Mathematics, 21, Oxford University Press, Oxford, 2011, xiv+684 pages | DOI | MR
[12] Balanced Cohen-Macaulay complexes, Trans. Amer. Math. Soc., Volume 249 (1979) no. 1, pp. 139-157 | DOI | MR | Zbl
[13] A monotonicity property of -vectors and -vectors, European J. Combin., Volume 14 (1993) no. 3, pp. 251-258 | DOI | MR | Zbl
[14] Enumerative combinatorics. Volume 1, Cambridge Studies in Advanced Mathematics, 49, Cambridge University Press, Cambridge, 2012, xiv+626 pages | MR
[15] On the matroid stratification of Grassmann varieties, specialization of coordinates, and a problem of N. White, Adv. Math., Volume 75 (1989) no. 2, pp. 202-211 | DOI | MR | Zbl
[16] Theory of matroids (White, Neil, ed.), Encyclopedia of Mathematics and its Applications, 26, Cambridge University Press, Cambridge, 1986, xviii+316 pages | DOI | MR
Cited by Sources: