We give a purely tropical analogue of Donagi’s $n$-gonal construction and investigate its combinatorial properties. The input of the construction is a harmonic double cover of an $n$-gonal tropical curve. For $n = 2$ and a dilated double cover, the output is a tower of the same type, and we show that the Prym varieties of the two double covers are dual tropical abelian varieties. For $n=3$ and a free double cover, the output is a tetragonal tropical curve with dilation profile nowhere $(2,2)$ or $(4)$, and we show that the construction can be reversed. Furthermore, the Prym variety of the double cover and the Jacobian of the tetragonal curve are isomorphic as principally polarized tropical abelian varieties. Our main tool is tropical homology theory, and our proofs closely follow the algebraic versions.
Revised:
Accepted:
Published online:
Keywords: tropical curve, gonality, abelian variety, Jacobian, Prym variety
Röhrle, Felix 1; Zakharov, Dmitry 2

@article{ALCO_2025__8_2_319_0, author = {R\"ohrle, Felix and Zakharov, Dmitry}, title = {The tropical $n$-gonal construction}, journal = {Algebraic Combinatorics}, pages = {319--378}, publisher = {The Combinatorics Consortium}, volume = {8}, number = {2}, year = {2025}, doi = {10.5802/alco.410}, language = {en}, url = {https://alco.centre-mersenne.org/articles/10.5802/alco.410/} }
TY - JOUR AU - Röhrle, Felix AU - Zakharov, Dmitry TI - The tropical $n$-gonal construction JO - Algebraic Combinatorics PY - 2025 SP - 319 EP - 378 VL - 8 IS - 2 PB - The Combinatorics Consortium UR - https://alco.centre-mersenne.org/articles/10.5802/alco.410/ DO - 10.5802/alco.410 LA - en ID - ALCO_2025__8_2_319_0 ER -
Röhrle, Felix; Zakharov, Dmitry. The tropical $n$-gonal construction. Algebraic Combinatorics, Volume 8 (2025) no. 2, pp. 319-378. doi : 10.5802/alco.410. https://alco.centre-mersenne.org/articles/10.5802/alco.410/
[1] Lifting harmonic morphisms II: Tropical curves and metrized complexes, Algebra Number Theory, Volume 9 (2015) no. 2, pp. 267-315 | DOI | MR | Zbl
[2] Metric properties of the tropical Abel-Jacobi map, J. Algebraic Combin., Volume 33 (2011) no. 3, pp. 349-381 | DOI | MR | Zbl
[3] Riemann-Roch and Abel-Jacobi theory on a finite graph, Adv. Math., Volume 215 (2007) no. 2, pp. 766-788 | DOI | MR | Zbl
[4] Complex abelian varieties, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 302, Springer-Verlag, Berlin, 2004, xii+635 pages | DOI | MR
[5] Symmetric powers of algebraic and tropical curves: A non-Archimedean perspective, Trans. Amer. Math. Soc. Ser. B, Volume 9 (2022), pp. 586-618 | DOI | MR | Zbl
[6] Gonality of algebraic curves and graphs, Algebraic and complex geometry (Springer Proc. Math. Stat.), Volume 71, Springer, Cham, 2014, pp. 77-108 | DOI | MR | Zbl
[7] Torelli theorem for graphs and tropical curves, Duke Math. J., Volume 153 (2010) no. 1, pp. 129-171 | DOI | MR | Zbl
[8] On metric graphs with prescribed gonality, J. Combin. Theory Ser. A, Volume 156 (2018), pp. 1-21 | DOI | MR | Zbl
[9] Towers of curves and Prym varieties, Izv. Akad. Nauk Armyan. SSR Ser. Mat., Volume 14 (1979) no. 1, p. 49-69, 72 | MR | Zbl
[10] The Prym variety of a ramified double covering of a trigonal curve, Erevan. Gos. Univ. Uchen. Zap. Estestv. Nauki, Volume 155 (1984) no. 1, pp. 7-13 | MR | Zbl
[11] The tetragonal construction, Bull. Amer. Math. Soc. (N.S.), Volume 4 (1981) no. 2, pp. 181-185 | DOI | MR | Zbl
[12] The fibers of the Prym map, Curves, Jacobians, and abelian varieties (Amherst, MA, 1990) (Contemp. Math.), Volume 136, Amer. Math. Soc., Providence, RI, 1992, pp. 55-125 | DOI | MR | Zbl
[13] Non-Archimedean and tropical theta functions, Math. Ann., Volume 372 (2018) no. 3-4, pp. 891-914 | DOI | MR | Zbl
[14] A Riemann-Roch theorem in tropical geometry, Math. Z., Volume 259 (2008) no. 1, pp. 217-230 | DOI | MR | Zbl
[15] The Prym variety of a dilated double cover of metric graphs, 2023 (forthcoming, Ann. Comb.) | arXiv
[16] A sheaf-theoretic approach to tropical homology, J. Algebra, Volume 635 (2023), pp. 577-641 | DOI | MR | Zbl
[17] Tautological cycles on tropical Jacobians, Algebra Number Theory, Volume 17 (2023) no. 4, pp. 885-921 | DOI | MR | Zbl
[18] Tropical homology, Math. Ann., Volume 374 (2019) no. 1-2, pp. 963-1006 | DOI | MR | Zbl
[19] Counter-examples of high Clifford index to Prym–Torelli, J. Alg. Geom., Volume 21 (2012), pp. 769-787 | DOI | MR | Zbl
[20] Tropicalization of theta characteristics, double covers, and Prym varieties, Selecta Math. (N.S.), Volume 24 (2018) no. 2, pp. 1391-1410 | DOI | MR | Zbl
[21] The trigonal construction in the ramified case, Bull. Lond. Math. Soc., Volume 55 (2023) no. 2, pp. 777-792 | DOI | MR | Zbl
[22] Skeletons of Prym varieties and Brill-Noether theory, Algebra Number Theory, Volume 15 (2021) no. 3, pp. 785-820 | DOI | MR | Zbl
[23] Kirchhoff’s theorem for Prym varieties, Forum Math. Sigma, Volume 10 (2022), Paper no. e11, 54 pages | DOI | MR | Zbl
[24] Universal properties of Prym varieties with an application to algebraic curves of genus five, Trans. Amer. Math. Soc., Volume 222 (1976), pp. 221-240 | DOI | MR | Zbl
[25] Tropical curves, their Jacobians and theta functions, Curves and abelian varieties (Contemp. Math.), Volume 465, Amer. Math. Soc., Providence, RI, 2008, pp. 203-230 | DOI | MR | Zbl
[26] Prym varieties and the geodesic flow on , Math. Ann., Volume 273 (1986) no. 2, pp. 297-315 | DOI | MR | Zbl
[27] Jacobians of curves with ’s are the Prym’s of trigonal curves, Bol. Soc. Mat. Mexicana (2), Volume 19 (1974) no. 1, pp. 9-13 | MR | Zbl
[28] A matroidal perspective on the tropical Prym variety, 2023 | arXiv
Cited by Sources: