The tropical $n$-gonal construction
Algebraic Combinatorics, Volume 8 (2025) no. 2, pp. 319-378.

We give a purely tropical analogue of Donagi’s $n$-gonal construction and investigate its combinatorial properties. The input of the construction is a harmonic double cover of an $n$-gonal tropical curve. For $n = 2$ and a dilated double cover, the output is a tower of the same type, and we show that the Prym varieties of the two double covers are dual tropical abelian varieties. For $n=3$ and a free double cover, the output is a tetragonal tropical curve with dilation profile nowhere $(2,2)$ or $(4)$, and we show that the construction can be reversed. Furthermore, the Prym variety of the double cover and the Jacobian of the tetragonal curve are isomorphic as principally polarized tropical abelian varieties. Our main tool is tropical homology theory, and our proofs closely follow the algebraic versions.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/alco.410
Classification: 14T20, 14H40
Keywords: tropical curve, gonality, abelian variety, Jacobian, Prym variety

Röhrle, Felix 1; Zakharov, Dmitry 2

1 Universität Tübingen Fachbereich Mathematik 72076 Tübingen, Germany
2 Central Michigan University Department of Mathematics Mount Pleasant, MI 48859, USA
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{ALCO_2025__8_2_319_0,
     author = {R\"ohrle, Felix and Zakharov, Dmitry},
     title = {The tropical $n$-gonal construction},
     journal = {Algebraic Combinatorics},
     pages = {319--378},
     publisher = {The Combinatorics Consortium},
     volume = {8},
     number = {2},
     year = {2025},
     doi = {10.5802/alco.410},
     language = {en},
     url = {https://alco.centre-mersenne.org/articles/10.5802/alco.410/}
}
TY  - JOUR
AU  - Röhrle, Felix
AU  - Zakharov, Dmitry
TI  - The tropical $n$-gonal construction
JO  - Algebraic Combinatorics
PY  - 2025
SP  - 319
EP  - 378
VL  - 8
IS  - 2
PB  - The Combinatorics Consortium
UR  - https://alco.centre-mersenne.org/articles/10.5802/alco.410/
DO  - 10.5802/alco.410
LA  - en
ID  - ALCO_2025__8_2_319_0
ER  - 
%0 Journal Article
%A Röhrle, Felix
%A Zakharov, Dmitry
%T The tropical $n$-gonal construction
%J Algebraic Combinatorics
%D 2025
%P 319-378
%V 8
%N 2
%I The Combinatorics Consortium
%U https://alco.centre-mersenne.org/articles/10.5802/alco.410/
%R 10.5802/alco.410
%G en
%F ALCO_2025__8_2_319_0
Röhrle, Felix; Zakharov, Dmitry. The tropical $n$-gonal construction. Algebraic Combinatorics, Volume 8 (2025) no. 2, pp. 319-378. doi : 10.5802/alco.410. https://alco.centre-mersenne.org/articles/10.5802/alco.410/

[1] Amini, Omid; Baker, Matthew; Brugallé, Erwan; Rabinoff, Joseph Lifting harmonic morphisms II: Tropical curves and metrized complexes, Algebra Number Theory, Volume 9 (2015) no. 2, pp. 267-315 | DOI | MR | Zbl

[2] Baker, Matthew; Faber, Xander Metric properties of the tropical Abel-Jacobi map, J. Algebraic Combin., Volume 33 (2011) no. 3, pp. 349-381 | DOI | MR | Zbl

[3] Baker, Matthew; Norine, Serguei Riemann-Roch and Abel-Jacobi theory on a finite graph, Adv. Math., Volume 215 (2007) no. 2, pp. 766-788 | DOI | MR | Zbl

[4] Birkenhake, Christina; Lange, Herbert Complex abelian varieties, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 302, Springer-Verlag, Berlin, 2004, xii+635 pages | DOI | MR

[5] Brandt, Madeline; Ulirsch, Martin Symmetric powers of algebraic and tropical curves: A non-Archimedean perspective, Trans. Amer. Math. Soc. Ser. B, Volume 9 (2022), pp. 586-618 | DOI | MR | Zbl

[6] Caporaso, Lucia Gonality of algebraic curves and graphs, Algebraic and complex geometry (Springer Proc. Math. Stat.), Volume 71, Springer, Cham, 2014, pp. 77-108 | DOI | MR | Zbl

[7] Caporaso, Lucia; Viviani, Filippo Torelli theorem for graphs and tropical curves, Duke Math. J., Volume 153 (2010) no. 1, pp. 129-171 | DOI | MR | Zbl

[8] Cools, Filip; Draisma, Jan On metric graphs with prescribed gonality, J. Combin. Theory Ser. A, Volume 156 (2018), pp. 1-21 | DOI | MR | Zbl

[9] Dalalyan, Samvel Towers of curves and Prym varieties, Izv. Akad. Nauk Armyan. SSR Ser. Mat., Volume 14 (1979) no. 1, p. 49-69, 72 | MR | Zbl

[10] Dalalyan, Samvel The Prym variety of a ramified double covering of a trigonal curve, Erevan. Gos. Univ. Uchen. Zap. Estestv. Nauki, Volume 155 (1984) no. 1, pp. 7-13 | MR | Zbl

[11] Donagi, Ron The tetragonal construction, Bull. Amer. Math. Soc. (N.S.), Volume 4 (1981) no. 2, pp. 181-185 | DOI | MR | Zbl

[12] Donagi, Ron The fibers of the Prym map, Curves, Jacobians, and abelian varieties (Amherst, MA, 1990) (Contemp. Math.), Volume 136, Amer. Math. Soc., Providence, RI, 1992, pp. 55-125 | DOI | MR | Zbl

[13] Foster, Tyler; Rabinoff, Joseph; Shokrieh, Farbod; Soto, Alejandro Non-Archimedean and tropical theta functions, Math. Ann., Volume 372 (2018) no. 3-4, pp. 891-914 | DOI | MR | Zbl

[14] Gathmann, Andreas; Kerber, Michael A Riemann-Roch theorem in tropical geometry, Math. Z., Volume 259 (2008) no. 1, pp. 217-230 | DOI | MR | Zbl

[15] Ghosh, Arkabrata; Zakharov, Dmitry The Prym variety of a dilated double cover of metric graphs, 2023 (forthcoming, Ann. Comb.) | arXiv

[16] Gross, Andreas; Shokrieh, Farbod A sheaf-theoretic approach to tropical homology, J. Algebra, Volume 635 (2023), pp. 577-641 | DOI | MR | Zbl

[17] Gross, Andreas; Shokrieh, Farbod Tautological cycles on tropical Jacobians, Algebra Number Theory, Volume 17 (2023) no. 4, pp. 885-921 | DOI | MR | Zbl

[18] Itenberg, Ilia; Katzarkov, Ludmil; Mikhalkin, Grigory; Zharkov, Ilia Tropical homology, Math. Ann., Volume 374 (2019) no. 1-2, pp. 963-1006 | DOI | MR | Zbl

[19] Izadi, Elham; Lange, Herbert Counter-examples of high Clifford index to Prym–Torelli, J. Alg. Geom., Volume 21 (2012), pp. 769-787 | DOI | MR | Zbl

[20] Jensen, David; Len, Yoav Tropicalization of theta characteristics, double covers, and Prym varieties, Selecta Math. (N.S.), Volume 24 (2018) no. 2, pp. 1391-1410 | DOI | MR | Zbl

[21] Lange, Herbert; Ortega, Angela The trigonal construction in the ramified case, Bull. Lond. Math. Soc., Volume 55 (2023) no. 2, pp. 777-792 | DOI | MR | Zbl

[22] Len, Yoav; Ulirsch, Martin Skeletons of Prym varieties and Brill-Noether theory, Algebra Number Theory, Volume 15 (2021) no. 3, pp. 785-820 | DOI | MR | Zbl

[23] Len, Yoav; Zakharov, Dmitry Kirchhoff’s theorem for Prym varieties, Forum Math. Sigma, Volume 10 (2022), Paper no. e11, 54 pages | DOI | MR | Zbl

[24] Masiewicki, Leon Universal properties of Prym varieties with an application to algebraic curves of genus five, Trans. Amer. Math. Soc., Volume 222 (1976), pp. 221-240 | DOI | MR | Zbl

[25] Mikhalkin, Grigory; Zharkov, Ilia Tropical curves, their Jacobians and theta functions, Curves and abelian varieties (Contemp. Math.), Volume 465, Amer. Math. Soc., Providence, RI, 2008, pp. 203-230 | DOI | MR | Zbl

[26] Pantazis, Stefanos Prym varieties and the geodesic flow on SO (n), Math. Ann., Volume 273 (1986) no. 2, pp. 297-315 | DOI | MR | Zbl

[27] Recillas, Sevin Jacobians of curves with g 4 1 ’s are the Prym’s of trigonal curves, Bol. Soc. Mat. Mexicana (2), Volume 19 (1974) no. 1, pp. 9-13 | MR | Zbl

[28] Röhrle, Felix; Zakharov, Dmitry A matroidal perspective on the tropical Prym variety, 2023 | arXiv

Cited by Sources: