We prove the existence of signed combinatorial interpretations for several large families of structure constants. These families include standard bases of symmetric and quasisymmetric polynomials, as well as various bases in Schubert theory. The results are stated in the language of computational complexity, while the proofs are based on the effective Möbius inversion.
Revised:
Accepted:
Published online:
Keywords: symmetric functions, quasisymmetric functions, Schubert polynomials, combinatorial interpretation, structure constants, $\#{\sf P}$, ${\sf GapP}$
Pak, Igor 1; Robichaux, Colleen 1

@article{ALCO_2025__8_2_495_0, author = {Pak, Igor and Robichaux, Colleen}, title = {Signed combinatorial interpretations in algebraic combinatorics}, journal = {Algebraic Combinatorics}, pages = {495--519}, publisher = {The Combinatorics Consortium}, volume = {8}, number = {2}, year = {2025}, doi = {10.5802/alco.413}, language = {en}, url = {https://alco.centre-mersenne.org/articles/10.5802/alco.413/} }
TY - JOUR AU - Pak, Igor AU - Robichaux, Colleen TI - Signed combinatorial interpretations in algebraic combinatorics JO - Algebraic Combinatorics PY - 2025 SP - 495 EP - 519 VL - 8 IS - 2 PB - The Combinatorics Consortium UR - https://alco.centre-mersenne.org/articles/10.5802/alco.413/ DO - 10.5802/alco.413 LA - en ID - ALCO_2025__8_2_495_0 ER -
%0 Journal Article %A Pak, Igor %A Robichaux, Colleen %T Signed combinatorial interpretations in algebraic combinatorics %J Algebraic Combinatorics %D 2025 %P 495-519 %V 8 %N 2 %I The Combinatorics Consortium %U https://alco.centre-mersenne.org/articles/10.5802/alco.413/ %R 10.5802/alco.413 %G en %F ALCO_2025__8_2_495_0
Pak, Igor; Robichaux, Colleen. Signed combinatorial interpretations in algebraic combinatorics. Algebraic Combinatorics, Volume 8 (2025) no. 2, pp. 495-519. doi : 10.5802/alco.413. https://alco.centre-mersenne.org/articles/10.5802/alco.413/
[1] The symmetric functions catalog, Online https://www.symmetricfunctions.com
[2] Cyclic sieving, skew Macdonald polynomials and Schur positivity, Algebr. Comb., Volume 3 (2020) no. 4, pp. 913-939 | Numdam | MR | Zbl
[3] -partition power sums, European J. Combin., Volume 110 (2023), Paper no. 103688, 16 pages | MR | Zbl
[4] A combinatorial interpretation of the noncommutative inverse Kostka matrix, Sém. Lothar. Combin., Volume 89B (2023), Paper no. 59, 12 pages | MR
[5] Schubert polynomials, slide polynomials, Stanley symmetric functions and quasi-Yamanouchi pipe dreams, Adv. Math., Volume 306 (2017), pp. 89-122 | DOI | MR | Zbl
[6] On quasisymmetric power sums, J. Combin. Theory Ser. A, Volume 175 (2020), Paper no. 105273, 37 pages | MR | Zbl
[7] A lift of the Schur and Hall-Littlewood bases to non-commutative symmetric functions, Canad. J. Math., Volume 66 (2014) no. 3, pp. 525-565 | DOI | MR | Zbl
[8] RC-graphs and Schubert polynomials, Experiment. Math., Volume 2 (1993) no. 4, pp. 257-269 | DOI | MR | Zbl
[9] Kostant polynomials and the cohomology ring for , Duke Math. J., Volume 96 (1999) no. 1, pp. 205-224 | MR | Zbl
[10] Some combinatorial properties of Schubert polynomials, J. Algebraic Combin., Volume 2 (1993) no. 4, pp. 345-374 | DOI | MR | Zbl
[11] Möbius functions of lattices, Adv. Math., Volume 127 (1997) no. 1, pp. 94-123 | DOI | MR | Zbl
[12] Longest increasing subsequences of random colored permutations, Electron. J. Combin., Volume 6 (1999), Paper no. 13, 12 pages | MR | Zbl
[13] Quantum Complexity of the Kronecker Coefficients, PRX Quantum, Volume 5 (2024), Paper no. 010329, 12 pages | DOI
[14] Positivity in the Grothendieck group of complex flag varieties, J. Algebra, Volume 258 (2002) no. 1, pp. 137-159 | DOI | MR | Zbl
[15] The lattice of integer partitions, Discrete Math., Volume 6 (1973), pp. 201-219 | DOI | MR | Zbl
[16] The complexity of computing Kronecker coefficients, 20th Annual International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2008) (Discrete Math. Theor. Comput. Sci. Proc.), Volume AJ, Assoc. Discrete Math. Theor. Comput. Sci., Nancy, 2008, pp. 357-368 | MR | Zbl
[17] Deciding positivity of Littlewood-Richardson coefficients, SIAM J. Discrete Math., Volume 27 (2013) no. 4, pp. 1639-1681 | DOI | MR | Zbl
[18] A combinatorial interpretation of the inverse -Kostka matrix, Discrete Math., Volume 193 (1998) no. 1-3, pp. 117-145 | DOI | MR | Zbl
[19] Equality cases of the Alexandrov–Fenchel inequality are not in the polynomial hierarchy, Forum Math. Pi, Volume 12 (2024), Paper no. e21, 38 pages | Zbl
[20] Algorithms for plethysm, Combinatorics and algebra (Boulder, Colo., 1983) (Contemp. Math.), Volume 34, Amer. Math. Soc., Providence, RI, 1984, pp. 109-153 | DOI | MR | Zbl
[21] Computing multiplicities of Lie group representations, 2012 IEEE 53rd Annual Symposium on Foundations of Computer Science—FOCS 2012, IEEE Computer Soc., Los Alamitos, CA, 2012, pp. 639-648 | DOI | MR
[22] The mystery of plethysm coefficients, Open problems in algebraic combinatorics (Proc. Sympos. Pure Math.), Volume 110, Amer. Math. Soc., Providence, RI, 2024, pp. 275-292 | DOI
[23] On the computation of Clebsch-Gordan coefficients and the dilation effect, Experiment. Math., Volume 15 (2006) no. 1, pp. 7-19 | DOI | MR | Zbl
[24] A plethysm formula for , Electron. J. Combin., Volume 4 (1997) no. 1, Paper no. 14, 10 pages | MR | Zbl
[25] On the inverse Kostka matrix, J. Combin. Theory Ser. A, Volume 103 (2003) no. 2, pp. 363-376 | DOI | MR | Zbl
[26] A combinatorial interpretation of the inverse Kostka matrix, Linear and Multilinear Algebra, Volume 26 (1990) no. 1-2, pp. 59-84 | MR | Zbl
[27] From quasisymmetric expansions to Schur expansions via a modified inverse Kostka matrix, European J. Combin., Volume 31 (2010) no. 8, pp. 2014-2027 | DOI | MR | Zbl
[28] Cyclic inclusion-exclusion, SIAM J. Discrete Math., Volume 29 (2015) no. 4, pp. 2284-2311 | DOI | MR | Zbl
[29] Asymptotics of characters of symmetric groups related to Stanley character formula, Ann. of Math. (2), Volume 173 (2011) no. 2, pp. 887-906 | DOI | Zbl
[30] The computational complexity of plethysm coefficients, Comput. Complexity, Volume 29 (2020) no. 2, Paper no. 8, 43 pages | MR | Zbl
[31] Grothendieck polynomials and the Yang-Baxter equation, Formal power series and algebraic combinatorics/Séries formelles et combinatoire algébrique, DIMACS, Piscataway, NJ, 1996, pp. 183-189
[32] Counting complexity, Complexity theory retrospective, II, Springer, New York, 1997, pp. 81-107 | DOI | Zbl
[33] Multipartite -partitions and inner products of skew Schur functions, Combinatorics and algebra (Boulder, Colo., 1983) (Contemp. Math.), Volume 34, Amer. Math. Soc., Providence, RI, 1984, pp. 289-317 | DOI | MR | Zbl
[34] Towards the geometry of double Hurwitz numbers, Adv. Math., Volume 198 (2005) no. 1, pp. 43-92 | DOI | MR | Zbl
[35] A class of lattices with Möbius function , European J. Combin., Volume 9 (1988) no. 3, pp. 225-240 | DOI | MR | Zbl
[36] Longest chains in the lattice of integer partitions ordered by majorization, European J. Combin., Volume 7 (1986) no. 1, pp. 1-10 | DOI | MR | Zbl
[37] The ,-Catalan numbers and the space of diagonal harmonics, University Lecture Series, 41, American Mathematical Society, Providence, RI, 2008, viii+167 pages | MR
[38] A combinatorial formula for Macdonald polynomials, J. Amer. Math. Soc., Volume 18 (2005) no. 3, pp. 735-761 | DOI | MR | Zbl
[39] Quasisymmetric Schur functions, J. Combin. Theory Ser. A, Volume 118 (2011) no. 2, pp. 463-490 | DOI | MR
[40] Affine Hecke algebras and positivity of LLT and Macdonald polynomials, Online, pp. 29, 2006 https://math.berkeley.edu/~mhaiman/ftp/llt-positivity/new-version.pdf
[41] The complexity theory companion, Texts in Theoretical Computer Science. An EATCS Series, Springer-Verlag, Berlin, 2002, xiv+369 pages | DOI | MR
[42] Hecke algebras, difference operators, and quasi-symmetric functions, Adv. Math., Volume 155 (2000) no. 2, pp. 181-238 | DOI | MR | Zbl
[43] On vanishing of Kronecker coefficients, Comput. Complexity, Volume 26 (2017) no. 4, pp. 949-992 | DOI | MR | Zbl
[44] What is in #P and what is not?, 2022 IEEE 63rd Annual Symposium on Foundations of Computer Science (FOCS) (2022), pp. 860-871 | DOI | MR
[45] Positivity of the symmetric group characters is as hard as the polynomial time hierarchy, Int. Math. Res. Not. IMRN (2024) no. 10, pp. 8442-8458 | DOI | MR | Zbl
[46] A remark on the quantum complexity of the Kronecker coefficients, 27th Quantum Information Processing (QIP) (2024) arxiv:2307.02389 (13 pp.)
[47] A class of symmetric polynomials with a parameter, Proc. Roy. Soc. Edinburgh Sect. A, Volume 69 (1970/71), pp. 1-18 | MR | Zbl
[48] You can’t always get what you want, in Let It Bleed, The Rolling Stones, 1969 (5 min.)
[49] The representation theory of the symmetric group, Encyclopedia of Mathematics and its Applications, 16, Addison-Wesley Publishing Co., Reading, MA, 1981, xxviii+510 pages | MR
[50] On lattices with Möbius function , Discrete Comput. Geom., Volume 2 (1987) no. 1, pp. 1-8 | DOI | MR | Zbl
[51] Schubert calculus and quiver varieties, ICM—International Congress of Mathematicians. Vol. 6. Sections 12–14, EMS Press, Berlin, 2023, pp. 4582-4605 | DOI | Zbl
[52] The honeycomb model of tensor products. I. Proof of the saturation conjecture, J. Amer. Math. Soc., Volume 12 (1999) no. 4, pp. 1055-1090 | DOI | MR | Zbl
[53] Schubert puzzles and integrability III: separated descents, 2023 | arXiv
[54] Weintrauben, Polynome, Tableaux, Bayreuth. Math. Schr. (1991) no. 38, pp. 1-97 (Dissertation, Universität Bayreuth, Bayreuth, 1990) | MR | Zbl
[55] Characters of symmetric groups: sharp bounds and applications, Invent. Math., Volume 174 (2008) no. 3, pp. 645-687 | DOI | MR | Zbl
[56] Transition on Grothendieck polynomials, Physics and combinatorics, 2000 (Nagoya), World Sci. Publ., River Edge, NJ, 2001, pp. 164-179 | DOI | MR
[57] Ribbon tableaux, Hall-Littlewood functions, quantum affine algebras, and unipotent varieties, J. Math. Phys., Volume 38 (1997) no. 2, pp. 1041-1068 | DOI | MR | Zbl
[58] Polynômes de Schubert, C. R. Acad. Sci. Paris Sér. I Math., Volume 294 (1982) no. 13, pp. 447-450 | MR | Zbl
[59] Structure de Hopf de l’anneau de cohomologie et de l’anneau de Grothendieck d’une variété de drapeaux, C. R. Acad. Sci. Paris Sér. I Math., Volume 295 (1982) no. 11, pp. 629-633 | MR | Zbl
[60] Keys & standard bases, Invariant theory and tableaux (Minneapolis, MN, 1988) (IMA Vol. Math. Appl.), Volume 19, Springer, New York, 1990, pp. 125-144 | MR | Zbl
[61] On certain symmetric functions, Jack, Hall-Littlewood and Macdonald polynomials (Contemp. Math.), Volume 417, Amer. Math. Soc., Providence, RI, 2006, pp. 43-56 Reprinted from Proc. London Math. Soc. (3) 11 (1961), 485–498 [MR0130308] | DOI | Zbl
[62] A computational and combinatorial exposé of plethystic calculus, J. Algebraic Combin., Volume 33 (2011) no. 2, pp. 163-198 | DOI | MR | Zbl
[63] Symmetric functions and Hall polynomials, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1979, viii+180 pages | MR
[64] A new class of symmetric functions., Séminaire Lotharingien de Combinatoire, Volume 20 (1988), Paper no. B20a, 41 pages http://eudml.org/doc/120965 | Zbl
[65] An explicit construction of type A Demazure atoms, J. Algebraic Combin., Volume 29 (2009) no. 3, pp. 295-313 | DOI | MR | Zbl
[66] Asymptotic bounds on graphical partitions and partition comparability, Int. Math. Res. Not. IMRN (2021) no. 4, pp. 2842-2860 | DOI | MR | Zbl
[67] Quasisymmetric divided differences, 2024 | arXiv
[68] -partitions with flags and back stable quasisymmetric functions, Comb. Theory, Volume 4 (2024) no. 2, Paper no. 4, 22 pages | MR | Zbl
[69] Plethysm, categories, and combinatorics, Adv. in Math., Volume 58 (1985) no. 1, pp. 61-88 | DOI | MR | Zbl
[70] A new approach to representation theory of symmetric groups, Selecta Math. (N.S.), Volume 2 (1996) no. 4, pp. 581-605 | DOI | MR | Zbl
[71] Ribbon tile invariants, Trans. Amer. Math. Soc., Volume 352 (2000) no. 12, pp. 5525-5561 | MR | Zbl
[72] Combinatorial inequalities, Notices Amer. Math. Soc., Volume 66 (2019) no. 7, pp. 1109-1112 (an expanded version of the paper is available at tinyurl.com/py8sv5v6) | MR | Zbl
[73] What is a combinatorial interpretation?, Open problems in algebraic combinatorics (Proc. Sympos. Pure Math.), Volume 110, Amer. Math. Soc., Providence, RI, 2024, pp. 191-260
[74] Strict unimodality of -binomial coefficients, C. R. Math. Acad. Sci. Paris, Volume 351 (2013) no. 11-12, pp. 415-418 | Numdam | MR | Zbl
[75] On the complexity of computing Kronecker coefficients, Comput. Complexity, Volume 26 (2017) no. 1, pp. 1-36 | MR | Zbl
[76] Bounds on Kronecker coefficients via contingency tables, Linear Algebra Appl., Volume 602 (2020), pp. 157-178 | MR | Zbl
[77] On the largest Kronecker and Littlewood-Richardson coefficients, J. Combin. Theory Ser. A, Volume 165 (2019), pp. 44-77 | MR | Zbl
[78] A bijection between -Kohnert diagrams and reverse set-valued tableaux, Electron. J. Combin., Volume 30 (2023) no. 4, Paper no. 4.26, 38 pages | MR | Zbl
[79] Complexity and asymptotics of structure constants, Open problems in algebraic combinatorics (Proc. Sympos. Pure Math.), Volume 110, Amer. Math. Soc., Providence, RI, 2024, pp. 61-85 | DOI
[80] Confirming two conjectures about the integer partitions, J. Combin. Theory Ser. A, Volume 88 (1999) no. 1, pp. 123-135 | DOI | MR | Zbl
[81] Chains in the Bruhat order, J. Algebraic Combin., Volume 29 (2009) no. 2, pp. 133-174 | DOI | MR | Zbl
[82] Upper bound on the characters of the symmetric groups, Invent. Math., Volume 125 (1996) no. 3, pp. 451-485 | DOI | MR | Zbl
[83] Combinatorial rules for three bases of polynomials, Sém. Lothar. Combin., Volume 74 (2015–2018), Paper no. B74a, 11 pages | MR | Zbl
[84] The symmetric group: Representations, combinatorial algorithms, and symmetric functions, Graduate Texts in Mathematics, 203, Springer-Verlag, New York, 2001, xvi+238 pages | DOI | MR
[85] The Möbius function of a composition poset, J. Algebraic Combin., Volume 24 (2006) no. 2, pp. 117-136 | DOI | MR | Zbl
[86] Galleries, Hall-Littlewood polynomials, and structure constants of the spherical Hecke algebra, Int. Math. Res. Not. (2006), Paper no. 75395, 31 pages | MR | Zbl
[87] Linear representations of finite groups, Graduate Texts in Mathematics, 42, Springer-Verlag, New York-Heidelberg, 1977, x+170 pages | DOI | MR
[88] Positivity problems and conjectures in algebraic combinatorics, Mathematics: frontiers and perspectives, Amer. Math. Soc., Providence, RI, 2000, pp. 295-319 | Zbl
[89] Enumerative combinatorics. vol. 1 (Second ed.) and vol. 2, Cambridge Studies in Advanced Mathematics, 49, Cambridge University Press, Cambridge, 2012 and 1999, 626 pp. and 581 pp pages | MR
[90] A Schensted algorithm for rim hook tableaux, J. Combin. Theory Ser. A, Volume 40 (1985) no. 2, pp. 211-247 | DOI | MR | Zbl
[91] The partial order of dominant weights, Adv. Math., Volume 136 (1998) no. 2, pp. 340-364 | DOI | MR | Zbl
[92] The shuffle conjecture, Bull. Amer. Math. Soc. (N.S.), Volume 57 (2020) no. 1, pp. 77-89 | DOI | MR | Zbl
[93] Orthogonality of the characters of , J. Combin. Theory Ser. A, Volume 40 (1985) no. 2, pp. 265-275 | DOI | MR | Zbl
[94] A bijection proving orthogonality of the characters of , Adv. in Math., Volume 50 (1983) no. 2, pp. 160-186 | DOI | MR | Zbl
[95] A Littlewood-Richardson rule for Koornwinder polynomials, J. Algebraic Combin., Volume 56 (2022) no. 2, pp. 335-381 | DOI | MR | Zbl
[96] An algorithm for computing plethysm coefficients, Proceedings of the 7th Conference on Formal Power Series and Algebraic Combinatorics (Noisy-le-Grand, 1995) (180) (1998) no. 1-3, pp. 391-402 | Zbl
[97] A Littlewood-Richardson rule for Macdonald polynomials, Math. Z., Volume 272 (2012) no. 3-4, pp. 1259-1290 | MR | Zbl
Cited by Sources: