We study a certain two-parameter family of non-standard graded complete intersection algebras $A(m,n)$. In case $n=2$, we show that if $m$ is even then $A(m,2)$ has the strong Lefschetz property and satisfies the complex Hodge–Riemann relations, while if $m$ is odd then $A(m,2)$ satisfies these properties only up to a certain degree. This supports a strengthening of a conjecture of Almkvist on the unimodality of the Hilbert function of $A(m,n)$.
Revised:
Accepted:
Published online:
Keywords: Hodge–Riemann property, strong Lefschetz property, higher Hessian, NE lattice paths, binomial determinants, pseudo-reflection group
Abdallah, Nancy 1; McDaniel, Chris 2

@article{ALCO_2025__8_2_295_0, author = {Abdallah, Nancy and McDaniel, Chris}, title = {Lattice {Paths,} {Lefschetz} {Properties,} and {Almkvist{\textquoteright}s} {Conjecture} in {Two} {Variables}}, journal = {Algebraic Combinatorics}, pages = {295--317}, publisher = {The Combinatorics Consortium}, volume = {8}, number = {2}, year = {2025}, doi = {10.5802/alco.414}, language = {en}, url = {https://alco.centre-mersenne.org/articles/10.5802/alco.414/} }
TY - JOUR AU - Abdallah, Nancy AU - McDaniel, Chris TI - Lattice Paths, Lefschetz Properties, and Almkvist’s Conjecture in Two Variables JO - Algebraic Combinatorics PY - 2025 SP - 295 EP - 317 VL - 8 IS - 2 PB - The Combinatorics Consortium UR - https://alco.centre-mersenne.org/articles/10.5802/alco.414/ DO - 10.5802/alco.414 LA - en ID - ALCO_2025__8_2_295_0 ER -
%0 Journal Article %A Abdallah, Nancy %A McDaniel, Chris %T Lattice Paths, Lefschetz Properties, and Almkvist’s Conjecture in Two Variables %J Algebraic Combinatorics %D 2025 %P 295-317 %V 8 %N 2 %I The Combinatorics Consortium %U https://alco.centre-mersenne.org/articles/10.5802/alco.414/ %R 10.5802/alco.414 %G en %F ALCO_2025__8_2_295_0
Abdallah, Nancy; McDaniel, Chris. Lattice Paths, Lefschetz Properties, and Almkvist’s Conjecture in Two Variables. Algebraic Combinatorics, Volume 8 (2025) no. 2, pp. 295-317. doi : 10.5802/alco.414. https://alco.centre-mersenne.org/articles/10.5802/alco.414/
[1] summation of a weighted product of binomial coefficients, Mathematics Stack Exchange question https://math.stackexchange.com/q/4713851
[2] Partitions into odd, unequal parts, J. Pure Appl. Algebra, Volume 38 (1985) no. 2-3, pp. 121-126 | DOI | MR | Zbl
[3] Representations of and unimodal polynomials, J. Algebra, Volume 108 (1987) no. 2, pp. 283-309 | DOI | MR | Zbl
[4] Proof of a conjecture about unimodal polynomials, J. Number Theory, Volume 32 (1989) no. 1, pp. 43-57 | DOI | MR | Zbl
[5] Schubert cells, and the cohomology of the spaces , Uspehi Mat. Nauk, Volume 28 (1973) no. 3(171), pp. 3-26 | MR | Zbl
[6] summation of a weighted product of binomial coefficients, Mathematics Stack Exchange answer https://math.stackexchange.com/q/4715942
[7] NIST Digital Library of Mathematical Functions, Release 1.2.4 of 2025-03-15 https://dlmf.nist.gov/ (F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller, B. V. Saunders, H. S. Cohl, and M. A. McClain, eds.)
[8] Binomial determinants, paths, and hook length formulae, Adv. in Math., Volume 58 (1985) no. 3, pp. 300-321 | DOI | MR | Zbl
[9] Lagrange inversion, J. Combin. Theory Ser. A, Volume 144 (2016), pp. 212-249 | DOI | MR | Zbl
[10] Invariant subrings under the action by a finite group generated by pseudo-reflections, Osaka Math. J., Volume 15 (1978) no. 1, pp. 47-50 | DOI | MR | Zbl
[11] Lie algebraic proofs of some theorems on partitions, Number theory and algebra, Academic Press, New York-London, 1977, pp. 135-155 | MR | Zbl
[12] Complex geometry, an introduction, Universitext, Springer-Verlag, Berlin, 2005, xii+309 pages | MR
[13] Artinian algebras and Jordan type, J. Commut. Algebra, Volume 14 (2022) no. 3, pp. 365-414 | DOI | MR | Zbl
[14] Lattice path enumeration, Handbook of enumerative combinatorics (Discrete Math. Appl. (Boca Raton)), CRC Press, Boca Raton, FL, 2015, pp. 589-678 | MR | Zbl
[15] On the vector representations of induced matroids, Bull. London Math. Soc., Volume 5 (1973), pp. 85-90 | DOI | MR | Zbl
[16] Higher Lorentzian Polynomials, Higher Hessians, and the Hodge–Riemann Property for graded Oriented Artinian Gorenstein Algebras in Codimension Two, 2022 | arXiv
[17] Free extensions and Lefschetz properties, with an application to rings of relative coinvariants, Linear Multilinear Algebra, Volume 69 (2021) no. 2, pp. 305-330 | DOI | MR | Zbl
[18] On the unimodality of some partition polynomials, European J. Combin., Volume 3 (1982) no. 1, pp. 69-84 | DOI | MR | Zbl
[19] summation of a weighted product of binomial coefficients, Mathematics Stack Exchange answer https://math.stackexchange.com/q/4714058
[20] Polynomial invariants of finite groups, Research Notes in Mathematics, 6, A K Peters, Ltd., Wellesley, MA, 1995, xvi+360 pages | MR
[21] Weyl groups, the hard Lefschetz theorem, and the Sperner property, SIAM J. Algebraic Discrete Methods, Volume 1 (1980) no. 2, pp. 168-184 | DOI | MR | Zbl
[22] Towards a Schubert calculus for complex reflection groups, Math. Proc. Cambridge Philos. Soc., Volume 134 (2003) no. 1, pp. 83-93 | DOI | MR | Zbl
[23] A remark on the Hessian of homogeneous polynomials, The curves seminar at Queen’s. Volume XIII. Proceedings of the seminar held at Queen’s University, Kingston, Ontario, Canada, 2000, Kingston: Queen’s University, 2000, pp. 169-178 | Zbl
Cited by Sources: