Lattice Paths, Lefschetz Properties, and Almkvist’s Conjecture in Two Variables
Algebraic Combinatorics, Volume 8 (2025) no. 2, pp. 295-317.

We study a certain two-parameter family of non-standard graded complete intersection algebras $A(m,n)$. In case $n=2$, we show that if $m$ is even then $A(m,2)$ has the strong Lefschetz property and satisfies the complex Hodge–Riemann relations, while if $m$ is odd then $A(m,2)$ satisfies these properties only up to a certain degree. This supports a strengthening of a conjecture of Almkvist on the unimodality of the Hilbert function of $A(m,n)$.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/alco.414
Classification: 13E10, 05A10, 05B20, 11B83, 13H10, 14F45, 15A15, 20F55
Keywords: Hodge–Riemann property, strong Lefschetz property, higher Hessian, NE lattice paths, binomial determinants, pseudo-reflection group

Abdallah, Nancy 1; McDaniel, Chris 2

1 Department of Mathematics University of Borås Borås, Sweden
2 Department of Mathematics Endicott College 376 Hale St Beverly, MA 01915, USA.
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{ALCO_2025__8_2_295_0,
     author = {Abdallah, Nancy and McDaniel, Chris},
     title = {Lattice {Paths,} {Lefschetz} {Properties,} and {Almkvist{\textquoteright}s} {Conjecture} in {Two} {Variables}},
     journal = {Algebraic Combinatorics},
     pages = {295--317},
     publisher = {The Combinatorics Consortium},
     volume = {8},
     number = {2},
     year = {2025},
     doi = {10.5802/alco.414},
     language = {en},
     url = {https://alco.centre-mersenne.org/articles/10.5802/alco.414/}
}
TY  - JOUR
AU  - Abdallah, Nancy
AU  - McDaniel, Chris
TI  - Lattice Paths, Lefschetz Properties, and Almkvist’s Conjecture in Two Variables
JO  - Algebraic Combinatorics
PY  - 2025
SP  - 295
EP  - 317
VL  - 8
IS  - 2
PB  - The Combinatorics Consortium
UR  - https://alco.centre-mersenne.org/articles/10.5802/alco.414/
DO  - 10.5802/alco.414
LA  - en
ID  - ALCO_2025__8_2_295_0
ER  - 
%0 Journal Article
%A Abdallah, Nancy
%A McDaniel, Chris
%T Lattice Paths, Lefschetz Properties, and Almkvist’s Conjecture in Two Variables
%J Algebraic Combinatorics
%D 2025
%P 295-317
%V 8
%N 2
%I The Combinatorics Consortium
%U https://alco.centre-mersenne.org/articles/10.5802/alco.414/
%R 10.5802/alco.414
%G en
%F ALCO_2025__8_2_295_0
Abdallah, Nancy; McDaniel, Chris. Lattice Paths, Lefschetz Properties, and Almkvist’s Conjecture in Two Variables. Algebraic Combinatorics, Volume 8 (2025) no. 2, pp. 295-317. doi : 10.5802/alco.414. https://alco.centre-mersenne.org/articles/10.5802/alco.414/

[1] Abdallah, Nancy summation of a weighted product of binomial coefficients, Mathematics Stack Exchange question https://math.stackexchange.com/q/4713851

[2] Almkvist, Gert Partitions into odd, unequal parts, J. Pure Appl. Algebra, Volume 38 (1985) no. 2-3, pp. 121-126 | DOI | MR | Zbl

[3] Almkvist, Gert Representations of SL (2,C) and unimodal polynomials, J. Algebra, Volume 108 (1987) no. 2, pp. 283-309 | DOI | MR | Zbl

[4] Almkvist, Gert Proof of a conjecture about unimodal polynomials, J. Number Theory, Volume 32 (1989) no. 1, pp. 43-57 | DOI | MR | Zbl

[5] Bernšteĭn, I. N.; Gelʼfand, I. M.; Gelʼfand, S. I. Schubert cells, and the cohomology of the spaces G/P, Uspehi Mat. Nauk, Volume 28 (1973) no. 3(171), pp. 3-26 | MR | Zbl

[6] Burstein, Alexander summation of a weighted product of binomial coefficients, Mathematics Stack Exchange answer https://math.stackexchange.com/q/4715942

[7] NIST Digital Library of Mathematical Functions, Release 1.2.4 of 2025-03-15 https://dlmf.nist.gov/ (F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller, B. V. Saunders, H. S. Cohl, and M. A. McClain, eds.)

[8] Gessel, Ira; Viennot, Gérard Binomial determinants, paths, and hook length formulae, Adv. in Math., Volume 58 (1985) no. 3, pp. 300-321 | DOI | MR | Zbl

[9] Gessel, Ira M. Lagrange inversion, J. Combin. Theory Ser. A, Volume 144 (2016), pp. 212-249 | DOI | MR | Zbl

[10] Goto, Shiro Invariant subrings under the action by a finite group generated by pseudo-reflections, Osaka Math. J., Volume 15 (1978) no. 1, pp. 47-50 | DOI | MR | Zbl

[11] Hughes, J. W. B. Lie algebraic proofs of some theorems on partitions, Number theory and algebra, Academic Press, New York-London, 1977, pp. 135-155 | MR | Zbl

[12] Huybrechts, Daniel Complex geometry, an introduction, Universitext, Springer-Verlag, Berlin, 2005, xii+309 pages | MR

[13] Iarrobino, Anthony; Macias Marques, Pedro; McDaniel, Chris Artinian algebras and Jordan type, J. Commut. Algebra, Volume 14 (2022) no. 3, pp. 365-414 | DOI | MR | Zbl

[14] Krattenthaler, Christian Lattice path enumeration, Handbook of enumerative combinatorics (Discrete Math. Appl. (Boca Raton)), CRC Press, Boca Raton, FL, 2015, pp. 589-678 | MR | Zbl

[15] Lindström, Bernt On the vector representations of induced matroids, Bull. London Math. Soc., Volume 5 (1973), pp. 85-90 | DOI | MR | Zbl

[16] Marques, Pedro Macias; McDaniel, Chris; Seceleanu, Alexandra; Watanabe, Junzo Higher Lorentzian Polynomials, Higher Hessians, and the Hodge–Riemann Property for graded Oriented Artinian Gorenstein Algebras in Codimension Two, 2022 | arXiv

[17] McDaniel, Chris; Chen, Shujian; Iarrobino, Anthony; Macias Marques, Pedro Free extensions and Lefschetz properties, with an application to rings of relative coinvariants, Linear Multilinear Algebra, Volume 69 (2021) no. 2, pp. 305-330 | DOI | MR | Zbl

[18] Odlyzko, A. M.; Richmond, L. B. On the unimodality of some partition polynomials, European J. Combin., Volume 3 (1982) no. 1, pp. 69-84 | DOI | MR | Zbl

[19] Riedel, Marko summation of a weighted product of binomial coefficients, Mathematics Stack Exchange answer https://math.stackexchange.com/q/4714058

[20] Smith, Larry Polynomial invariants of finite groups, Research Notes in Mathematics, 6, A K Peters, Ltd., Wellesley, MA, 1995, xvi+360 pages | MR

[21] Stanley, Richard P. Weyl groups, the hard Lefschetz theorem, and the Sperner property, SIAM J. Algebraic Discrete Methods, Volume 1 (1980) no. 2, pp. 168-184 | DOI | MR | Zbl

[22] Totaro, Burt Towards a Schubert calculus for complex reflection groups, Math. Proc. Cambridge Philos. Soc., Volume 134 (2003) no. 1, pp. 83-93 | DOI | MR | Zbl

[23] Watanabe, Junzo A remark on the Hessian of homogeneous polynomials, The curves seminar at Queen’s. Volume XIII. Proceedings of the seminar held at Queen’s University, Kingston, Ontario, Canada, 2000, Kingston: Queen’s University, 2000, pp. 169-178 | Zbl

Cited by Sources: