On the automorphism group of a putative Conway 99-graph
Algebraic Combinatorics, Volume 8 (2025) no. 2, pp. 379-398.

Let $\Gamma $ be a Conway 99-graph, that is, a strongly regular graph with parameters $(99,14,1,2)$. Existence of such a graph remains an elusive open problem, however various authors have made significant contributions by analyzing the structure of the automorphism group $G={\rm Aut}(\Gamma )$. In this paper we duplicate many results of our predecessors (e.g. Behbahani & Lam, Crnković & Maksimović), but crucially, we accomplish this without the aid of a computer. Specifically, we give computer-free proofs that divisibility of $|G|$ by $2$ implies $|G|$ divides $6$ while divisibility of $|G|$ by $7$ implies $G \cong \mathbb{Z}_7$.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/alco.418
Classification: 05E18, 05C25, 58D19
Keywords: Conway $99$-graph, strongly regular graph, automorphism group, orbit partition, orbit valencies

Cesarz, Patrick G. 1; Woldar, Andrew J. 2

1 University of Wyoming Dept. of Mathematics & Statistics 1000 E. University Ave. Laramie, WY 82071 (USA)
2 Villanova University Dept. of Mathematics & Statistics 800 E. Lancaster Ave. Villanova, PA (USA)
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{ALCO_2025__8_2_379_0,
     author = {Cesarz, Patrick G. and Woldar, Andrew J.},
     title = {On the automorphism group of a putative {Conway} 99-graph},
     journal = {Algebraic Combinatorics},
     pages = {379--398},
     publisher = {The Combinatorics Consortium},
     volume = {8},
     number = {2},
     year = {2025},
     doi = {10.5802/alco.418},
     language = {en},
     url = {https://alco.centre-mersenne.org/articles/10.5802/alco.418/}
}
TY  - JOUR
AU  - Cesarz, Patrick G.
AU  - Woldar, Andrew J.
TI  - On the automorphism group of a putative Conway 99-graph
JO  - Algebraic Combinatorics
PY  - 2025
SP  - 379
EP  - 398
VL  - 8
IS  - 2
PB  - The Combinatorics Consortium
UR  - https://alco.centre-mersenne.org/articles/10.5802/alco.418/
DO  - 10.5802/alco.418
LA  - en
ID  - ALCO_2025__8_2_379_0
ER  - 
%0 Journal Article
%A Cesarz, Patrick G.
%A Woldar, Andrew J.
%T On the automorphism group of a putative Conway 99-graph
%J Algebraic Combinatorics
%D 2025
%P 379-398
%V 8
%N 2
%I The Combinatorics Consortium
%U https://alco.centre-mersenne.org/articles/10.5802/alco.418/
%R 10.5802/alco.418
%G en
%F ALCO_2025__8_2_379_0
Cesarz, Patrick G.; Woldar, Andrew J. On the automorphism group of a putative Conway 99-graph. Algebraic Combinatorics, Volume 8 (2025) no. 2, pp. 379-398. doi : 10.5802/alco.418. https://alco.centre-mersenne.org/articles/10.5802/alco.418/

[1] Behbahani, Majid; Lam, Clement Strongly regular graphs with non-trivial automorphisms, Discrete Math., Volume 311 (2011) no. 2-3, pp. 132-144 | DOI | MR | Zbl

[2] Biggs, Norman Finite groups of automorphisms, London Mathematical Society Lecture Note Series, 6, Cambridge University Press, London-New York, 1971, iii+117 pages | MR

[3] Biggs, Norman Algebraic graph theory, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1993, viii+205 pages | MR

[4] Brouwer, A. E.; Cohen, A. M.; Neumaier, A. Distance-regular graphs, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], 18, Springer-Verlag, Berlin, 1989, xviii+495 pages | DOI | MR

[5] Brouwer, Andries E.; Van Maldeghem, H. Strongly regular graphs, Encyclopedia of Mathematics and its Applications, 182, Cambridge University Press, Cambridge, 2022, xvii+462 pages | DOI | MR

[6] Conway, John H. Five $1000 Problems, Proceedings OEIS50–DIMACS Conference, 2014, OEIS Foundation Inc., Updated 2017, p. A248380

[7] Crnković, Dean; Maksimović, Marija Construction of strongly regular graphs having an automorphism group of composite order, Contrib. Discrete Math., Volume 15 (2020) no. 1, pp. 22-41 | DOI | MR | Zbl

[8] Godsil, Chris; Royle, Gordon Algebraic graph theory, Graduate Texts in Mathematics, 207, Springer-Verlag, New York, 2001, xx+439 pages | DOI | MR

[9] Guy, Richard K. Problems, Proceedings of a Conference held at Michigan State University, 1974 (Kelly, L. M., ed.) (Lecture Notes in Math.), Volume 490, Springer-Verlag, Berlin, 1975, pp. 233-244

[10] Haemers, Willem H. Hoffman’s ratio bound, Linear Algebra Appl., Volume 617 (2021), pp. 215-219 | DOI | MR | Zbl

[11] Makhnev, A. A. On automorphisms of distance-regular graphs, J. Math. Sci., Volume 166 (2010) no. 6, pp. 733-742 | DOI | Zbl

[12] Makhnev, A. A.; Minakov, I. M. On automorphisms of strongly regular graphs with the parameters λ=1 and μ=2, Diskret. Mat., Volume 16 (2004) no. 1, pp. 95-104 | DOI | MR | Zbl

[13] Rotman, Joseph J. An introduction to the theory of groups, Allyn and Bacon, Inc., Boston, MA, 1984, x+422 pages | MR

[14] Wilbrink, H. A. On the (99,14,1,2) strongly regular graph, Papers dedicated to J. J. Seidel (P. J. de Doelder, J. H. van Lint J. de Graaf, ed.), Volume 84-WSK-03 Tech. Report, Eindhoven Univ., 1984, pp. 342-355 | Zbl

Cited by Sources: