Let $\Gamma $ be a Conway 99-graph, that is, a strongly regular graph with parameters $(99,14,1,2)$. Existence of such a graph remains an elusive open problem, however various authors have made significant contributions by analyzing the structure of the automorphism group $G={\rm Aut}(\Gamma )$. In this paper we duplicate many results of our predecessors (e.g. Behbahani & Lam, Crnković & Maksimović), but crucially, we accomplish this without the aid of a computer. Specifically, we give computer-free proofs that divisibility of $|G|$ by $2$ implies $|G|$ divides $6$ while divisibility of $|G|$ by $7$ implies $G \cong \mathbb{Z}_7$.
Revised:
Accepted:
Published online:
Keywords: Conway $99$-graph, strongly regular graph, automorphism group, orbit partition, orbit valencies
Cesarz, Patrick G. 1; Woldar, Andrew J. 2

@article{ALCO_2025__8_2_379_0, author = {Cesarz, Patrick G. and Woldar, Andrew J.}, title = {On the automorphism group of a putative {Conway} 99-graph}, journal = {Algebraic Combinatorics}, pages = {379--398}, publisher = {The Combinatorics Consortium}, volume = {8}, number = {2}, year = {2025}, doi = {10.5802/alco.418}, language = {en}, url = {https://alco.centre-mersenne.org/articles/10.5802/alco.418/} }
TY - JOUR AU - Cesarz, Patrick G. AU - Woldar, Andrew J. TI - On the automorphism group of a putative Conway 99-graph JO - Algebraic Combinatorics PY - 2025 SP - 379 EP - 398 VL - 8 IS - 2 PB - The Combinatorics Consortium UR - https://alco.centre-mersenne.org/articles/10.5802/alco.418/ DO - 10.5802/alco.418 LA - en ID - ALCO_2025__8_2_379_0 ER -
%0 Journal Article %A Cesarz, Patrick G. %A Woldar, Andrew J. %T On the automorphism group of a putative Conway 99-graph %J Algebraic Combinatorics %D 2025 %P 379-398 %V 8 %N 2 %I The Combinatorics Consortium %U https://alco.centre-mersenne.org/articles/10.5802/alco.418/ %R 10.5802/alco.418 %G en %F ALCO_2025__8_2_379_0
Cesarz, Patrick G.; Woldar, Andrew J. On the automorphism group of a putative Conway 99-graph. Algebraic Combinatorics, Volume 8 (2025) no. 2, pp. 379-398. doi : 10.5802/alco.418. https://alco.centre-mersenne.org/articles/10.5802/alco.418/
[1] Strongly regular graphs with non-trivial automorphisms, Discrete Math., Volume 311 (2011) no. 2-3, pp. 132-144 | DOI | MR | Zbl
[2] Finite groups of automorphisms, London Mathematical Society Lecture Note Series, 6, Cambridge University Press, London-New York, 1971, iii+117 pages | MR
[3] Algebraic graph theory, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1993, viii+205 pages | MR
[4] Distance-regular graphs, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], 18, Springer-Verlag, Berlin, 1989, xviii+495 pages | DOI | MR
[5] Strongly regular graphs, Encyclopedia of Mathematics and its Applications, 182, Cambridge University Press, Cambridge, 2022, xvii+462 pages | DOI | MR
[6] Five $1000 Problems, Proceedings OEIS50–DIMACS Conference, 2014, OEIS Foundation Inc., Updated 2017, p. A248380
[7] Construction of strongly regular graphs having an automorphism group of composite order, Contrib. Discrete Math., Volume 15 (2020) no. 1, pp. 22-41 | DOI | MR | Zbl
[8] Algebraic graph theory, Graduate Texts in Mathematics, 207, Springer-Verlag, New York, 2001, xx+439 pages | DOI | MR
[9] Problems, Proceedings of a Conference held at Michigan State University, 1974 (Kelly, L. M., ed.) (Lecture Notes in Math.), Volume 490, Springer-Verlag, Berlin, 1975, pp. 233-244
[10] Hoffman’s ratio bound, Linear Algebra Appl., Volume 617 (2021), pp. 215-219 | DOI | MR | Zbl
[11] On automorphisms of distance-regular graphs, J. Math. Sci., Volume 166 (2010) no. 6, pp. 733-742 | DOI | Zbl
[12] On automorphisms of strongly regular graphs with the parameters and , Diskret. Mat., Volume 16 (2004) no. 1, pp. 95-104 | DOI | MR | Zbl
[13] An introduction to the theory of groups, Allyn and Bacon, Inc., Boston, MA, 1984, x+422 pages | MR
[14] On the strongly regular graph, Papers dedicated to J. J. Seidel (P. J. de Doelder, J. H. van Lint J. de Graaf, ed.), Volume 84-WSK-03 Tech. Report, Eindhoven Univ., 1984, pp. 342-355 | Zbl
Cited by Sources: