Generalizing the strong Lefschetz property for $\mathbb{N}$-graded algebras, we introduce the multigraded strong Lefschetz property. We show that, for $\mathbf{a} \in \mathbb{N}^m_+$, the generic $\mathbb{N}^m$-graded Artinian reduction of the Stanley-Reisner ring of an $\mathbf{a}$-balanced homology sphere over a field of characteristic $2$ satisfies the multigraded strong Lefschetz property. As a corollary, we prove that the flag $h$-numbers of an $\mathbf{a}$-balanced simplicial sphere satisfy $h_{\mathbf{b}} \le h_{\mathbf{c}}$ for $\mathbf{b} \le \mathbf{c} \le \mathbf{a}-\mathbf{b}$. This result can be viewed as a common generalization of the unimodality of the $h$-vector of a simplicial sphere by Adiprasito and the balanced generalized lower bound inequality by Juhnke-Kubitzke and Murai. We further generalize these results to $\mathbf{a}$-balanced homology manifolds and $\mathbf{a}$-balanced simplicial cycles over fields of characteristic $2$.
Revised:
Accepted:
Published online:
Keywords: Lefschetz property, Stanley-Reisner ring, balancedness, multigraded algebra, unimodality
Oba, Ryoshun 1

@article{ALCO_2025__8_3_775_0, author = {Oba, Ryoshun}, title = {Multigraded strong {Lefschetz} property for balanced simplicial complexes}, journal = {Algebraic Combinatorics}, pages = {775--794}, publisher = {The Combinatorics Consortium}, volume = {8}, number = {3}, year = {2025}, doi = {10.5802/alco.419}, language = {en}, url = {https://alco.centre-mersenne.org/articles/10.5802/alco.419/} }
TY - JOUR AU - Oba, Ryoshun TI - Multigraded strong Lefschetz property for balanced simplicial complexes JO - Algebraic Combinatorics PY - 2025 SP - 775 EP - 794 VL - 8 IS - 3 PB - The Combinatorics Consortium UR - https://alco.centre-mersenne.org/articles/10.5802/alco.419/ DO - 10.5802/alco.419 LA - en ID - ALCO_2025__8_3_775_0 ER -
%0 Journal Article %A Oba, Ryoshun %T Multigraded strong Lefschetz property for balanced simplicial complexes %J Algebraic Combinatorics %D 2025 %P 775-794 %V 8 %N 3 %I The Combinatorics Consortium %U https://alco.centre-mersenne.org/articles/10.5802/alco.419/ %R 10.5802/alco.419 %G en %F ALCO_2025__8_3_775_0
Oba, Ryoshun. Multigraded strong Lefschetz property for balanced simplicial complexes. Algebraic Combinatorics, Volume 8 (2025) no. 3, pp. 775-794. doi : 10.5802/alco.419. https://alco.centre-mersenne.org/articles/10.5802/alco.419/
[1] Toric chordality, J. Math. Pures Appl. (9), Volume 108 (2017) no. 5, pp. 783-807 | DOI | MR | Zbl
[2] Combinatorial Lefschetz theorems beyond positivity, 2018 | arXiv | Zbl
[3] Anisotropy, biased pairings, and the Lefschetz property for pseudomanifolds and cycles, 2021 | arXiv | Zbl
[4] Beyond positivity in Ehrhart Theory, 2022 | arXiv | Zbl
[5] The partition complex: an invitation to combinatorial commutative algebra, Surveys in combinatorics 2021 (London Math. Soc. Lecture Note Ser.), Volume 470, Cambridge Univ. Press, Cambridge, 2021, pp. 1-41 | MR | Zbl
[6] On partial barycentric subdivision, Results Math., Volume 73 (2018) no. 1, Paper no. 21, 20 pages | DOI | MR | Zbl
[7] Lefschetz properties of balanced 3-polytopes, Rocky Mountain J. Math., Volume 48 (2018) no. 3, pp. 769-790 | DOI | MR | Zbl
[8] The generic rigidity of minimal cycles, Ph. D. Thesis, Cornell University (1988), 68 pages | MR
[9] Balanced complexes and complexes without large missing faces, Ark. Mat., Volume 49 (2011) no. 2, pp. 335-350 | DOI | MR | Zbl
[10] The Lefschetz properties, Lecture Notes in Mathematics, 2080, Springer, Heidelberg, 2013, xx+250 pages | DOI | MR | Zbl
[11] Balanced generalized lower bound inequality for simplicial polytopes, Selecta Math. (N.S.), Volume 24 (2018) no. 2, pp. 1677-1689 | DOI | MR | Zbl
[12] A generalized lower bound theorem for balanced manifolds, Math. Z., Volume 289 (2018) no. 3-4, pp. 921-942 | DOI | MR | Zbl
[13] Bipartite rigidity, Trans. Amer. Math. Soc., Volume 368 (2016) no. 8, pp. 5515-5545 | DOI | MR | Zbl
[14] On the anisotropy theorem of Papadakis and Petrotou, Algebr. Comb., Volume 6 (2023) no. 5, pp. 1313-1330 | DOI | MR | Zbl
[15] Lower bound theorems and a generalized lower bound conjecture for balanced simplicial complexes, Mathematika, Volume 62 (2016) no. 2, pp. 441-477 | DOI | MR | Zbl
[16] P.L.-spheres, convex polytopes, and stress, Discrete Comput. Geom., Volume 15 (1996) no. 4, pp. 389-421 | DOI | MR | Zbl
[17] Tight combinatorial manifolds and graded Betti numbers, Collect. Math., Volume 66 (2015) no. 3, pp. 367-386 | DOI | MR | Zbl
[18] On the generalized lower bound conjecture for polytopes and spheres, Acta Math., Volume 210 (2013) no. 1, pp. 185-202 | DOI | MR | Zbl
[19] Applications of Klee’s Dehn-Sommerville relations, Discrete Comput. Geom., Volume 42 (2009) no. 2, pp. 261-276 | DOI | MR | Zbl
[20] Socles of Buchsbaum modules, complexes and posets, Adv. Math., Volume 222 (2009) no. 6, pp. 2059-2084 | DOI | MR | Zbl
[21] Face numbers of pseudomanifolds with isolated singularities, Math. Scand., Volume 110 (2012) no. 2, pp. 198-222 | DOI | MR | Zbl
[22] -vectors of manifolds with boundary, Algebr. Comb., Volume 3 (2020) no. 4, pp. 887-911 | DOI | Numdam | MR | Zbl
[23] Rigidity of balanced minimal cycle complexes, SIAM J. Discrete Math., Volume 39 (2025) no. 2, pp. 681-697 | DOI | MR | Zbl
[24] The characteristic 2 anisotropicity of simplicial spheres, 2020 | arXiv | Zbl
[25] On the number of faces of simplicial complexes and the purity of Frobenius, Math. Z., Volume 178 (1981) no. 1, pp. 125-142 | DOI | MR | Zbl
[26] Balanced Cohen-Macaulay complexes, Trans. Amer. Math. Soc., Volume 249 (1979) no. 1, pp. 139-157 | DOI | MR | Zbl
[27] The number of faces of a simplicial convex polytope, Adv. in Math., Volume 35 (1980) no. 3, pp. 236-238 | DOI | MR | Zbl
[28] Combinatorics and commutative algebra, Progress in Mathematics, 41, Birkhäuser Boston, Inc., Boston, MA, 1996, x+164 pages | MR | Zbl
[29] A homological interpretation of skeletal ridigity, Adv. in Appl. Math., Volume 25 (2000) no. 1, pp. 102-151 | DOI | MR | Zbl
[30] Lectures on polytopes, Graduate Texts in Mathematics, 152, Springer-Verlag, New York, 1995, x+370 pages | DOI | MR | Zbl
Cited by Sources: