Lattices of acyclic pipe dreams
Algebraic Combinatorics, Volume 8 (2025) no. 3, pp. 817-856.

We show that for any permutation $\omega $, the increasing flip graph on acyclic pipe dreams with exiting permutation $\omega $ is a lattice quotient of the interval $[e,\omega ]$ of the weak order. We then discuss conjectural generalizations of this result to acyclic facets of subword complexes on arbitrary finite Coxeter groups.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/alco.423
Classification: 06A07, 06B10, 20F55
Keywords: lattices, lattice congruences, pipe dreams, subword complexes

Bergeron, Nantel 1; Cartier, Noémie 2; Ceballos, Cesar 3; Pilaud, Vincent 4

1 Department of Mathematics and Statistics York University Toronto Canada
2 LISN Université Paris Saclay France
3 Institute of Geometry Technische Universität Graz Austria
4 Universitat de Barcelona & Centre de Recerca Matemàtica Barcelona Spain
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{ALCO_2025__8_3_817_0,
     author = {Bergeron, Nantel and Cartier, No\'emie and Ceballos, Cesar and Pilaud, Vincent},
     title = {Lattices of acyclic pipe dreams},
     journal = {Algebraic Combinatorics},
     pages = {817--856},
     publisher = {The Combinatorics Consortium},
     volume = {8},
     number = {3},
     year = {2025},
     doi = {10.5802/alco.423},
     language = {en},
     url = {https://alco.centre-mersenne.org/articles/10.5802/alco.423/}
}
TY  - JOUR
AU  - Bergeron, Nantel
AU  - Cartier, Noémie
AU  - Ceballos, Cesar
AU  - Pilaud, Vincent
TI  - Lattices of acyclic pipe dreams
JO  - Algebraic Combinatorics
PY  - 2025
SP  - 817
EP  - 856
VL  - 8
IS  - 3
PB  - The Combinatorics Consortium
UR  - https://alco.centre-mersenne.org/articles/10.5802/alco.423/
DO  - 10.5802/alco.423
LA  - en
ID  - ALCO_2025__8_3_817_0
ER  - 
%0 Journal Article
%A Bergeron, Nantel
%A Cartier, Noémie
%A Ceballos, Cesar
%A Pilaud, Vincent
%T Lattices of acyclic pipe dreams
%J Algebraic Combinatorics
%D 2025
%P 817-856
%V 8
%N 3
%I The Combinatorics Consortium
%U https://alco.centre-mersenne.org/articles/10.5802/alco.423/
%R 10.5802/alco.423
%G en
%F ALCO_2025__8_3_817_0
Bergeron, Nantel; Cartier, Noémie; Ceballos, Cesar; Pilaud, Vincent. Lattices of acyclic pipe dreams. Algebraic Combinatorics, Volume 8 (2025) no. 3, pp. 817-856. doi : 10.5802/alco.423. https://alco.centre-mersenne.org/articles/10.5802/alco.423/

[1] Bergeron, Nantel; Billey, Sara RC-graphs and Schubert polynomials, Experiment. Math., Volume 2 (1993) no. 4, pp. 257-269 | DOI | MR | Zbl

[2] Björner, Anders; Brenti, Francesco Combinatorics of Coxeter groups, Graduate Texts in Mathematics, 231, Springer, New York, 2005, xiv+363 pages | MR | Zbl

[3] Björner, Anders; Wachs, Michelle L. Permutation statistics and linear extensions of posets, J. Combin. Theory Ser. A, Volume 58 (1991) no. 1, pp. 85-114 | DOI | MR | Zbl

[4] Cartier, Noémie Acyclic pipe dreams, subword complexes and lattice quotients of weak order intervals, Sém. Lothar. Combin., Volume 89B (2023), Paper no. 58, 12 pages | MR

[5] Cartier, Noémie Lattice properties of acyclic Cambrian pipe dreams, 2023 | arXiv | Zbl

[6] Ceballos, Cesar; Labbé, Jean-Philippe; Stump, Christian Subword complexes, cluster complexes, and generalized multi-associahedra, J. Algebraic Combin., Volume 39 (2014) no. 1, pp. 17-51 | DOI | MR | Zbl

[7] Ceballos, Cesar; Padrol, Arnau; Sarmiento, Camilo The ν-Tamari lattice via ν-trees, ν-bracket vectors, and subword complexes, Electron. J. Combin., Volume 27 (2020) no. 1, Paper no. 1.14, 31 pages | MR | Zbl

[8] Chatel, Grégory; Pilaud, Vincent; Pons, Viviane The weak order on integer posets, Algebraic Combinatorics, Volume 2 (2019) no. 1, pp. 1-48 | DOI | Numdam | MR | Zbl

[9] Hivert, Florent; Novelli, Jean-Christophe; Thibon, Jean-Yves The algebra of binary search trees, Theoret. Comput. Sci., Volume 339 (2005) no. 1, pp. 129-165 | DOI | MR | Zbl

[10] Humphreys, James E. Reflection groups and Coxeter groups, Cambridge Studies in Advanced Mathematics, 29, Cambridge University Press, 1990, xii+204 pages | DOI

[11] Jahn, Dennis; Stump, Christian Bruhat intervals, subword complexes and brick polyhedra for finite Coxeter groups, Math. Z., Volume 304 (2023) no. 2, Paper no. 24, 32 pages | MR | Zbl

[12] Knutson, Allen; Miller, Ezra Subword complexes in Coxeter groups, Adv. Math., Volume 184 (2004) no. 1, pp. 161-176 | DOI | MR | Zbl

[13] Knutson, Allen; Miller, Ezra Gröbner geometry of Schubert polynomials, Ann. of Math. (2), Volume 161 (2005) no. 3, pp. 1245-1318 | DOI | MR | Zbl

[14] Lascoux, Alain; Schützenberger, Marcel-Paul Polynômes de Schubert, C. R. Math. Acad. Sci. Paris, Volume 294 (1982) no. 13, pp. 447-450 | Zbl

[15] Lascoux, Alain; Schützenberger, Marcel-Paul Schubert polynomials and the Littlewood-Richardson rule, Lett. Math. Phys., Volume 10 (1985) no. 2-3, pp. 111-124 | DOI | MR | Zbl

[16] Loday, Jean-Louis Realization of the Stasheff polytope, Arch. Math. (Basel), Volume 83 (2004) no. 3, pp. 267-278 | MR | Zbl

[17] Loday, Jean-Louis; Ronco, María O. Hopf algebra of the planar binary trees, Adv. Math., Volume 139 (1998) no. 2, pp. 293-309 | DOI | MR | Zbl

[18] Pilaud, Vincent Multitriangulations, pseudotriangulations and some problems of realization of polytopes, Ph. D. Thesis, Université Paris 7 & Universidad de Cantabria (2010) (Available online arXiv:1009.1605) | Zbl

[19] Pilaud, Vincent The greedy flip tree of a subword complex, 2012 | arXiv | Zbl

[20] Pilaud, Vincent Brick polytopes, lattice quotients, and Hopf algebras, J. Combin. Theory Ser. A, Volume 155 (2018), pp. 418-457 | DOI | MR | Zbl

[21] Pilaud, Vincent; Pocchiola, Michel Multitriangulations, pseudotriangulations and primitive sorting networks, Discrete Comput. Geom., Volume 48 (2012) no. 1, pp. 142-191 | DOI | MR | Zbl

[22] Pilaud, Vincent; Santos, Francisco The brick polytope of a sorting network, European J. Combin., Volume 33 (2012) no. 4, pp. 632-662 | DOI | MR | Zbl

[23] Pilaud, Vincent; Stump, Christian EL-labelings and canonical spanning trees for subword complexes, Discrete Geometry and Optimization (Bezdek, Karoly; Deza, Antoine; Ye, Yinyu, eds.) (Fields Institute Communications Series), Volume 69, Springer, 2013, pp. 213-248 | DOI | Zbl

[24] Pilaud, Vincent; Stump, Christian Brick polytopes of spherical subword complexes and generalized associahedra, Adv. Math., Volume 276 (2015), pp. 1-61 | DOI | MR | Zbl

[25] Préville-Ratelle, Louis-François; Viennot, Xavier The enumeration of generalized Tamari intervals, Trans. Amer. Math. Soc., Volume 369 (2017) no. 7, pp. 5219-5239 | DOI | MR | Zbl

[26] Reading, Nathan Cambrian lattices, Adv. Math., Volume 205 (2006) no. 2, pp. 313-353 | DOI | MR | Zbl

[27] Reading, Nathan Lattice theory of the poset of regions, Lattice theory: special topics and applications. Vol. 2, Birkhäuser/Springer, Cham, 2016, pp. 399-487 | Zbl

[28] Rubey, Martin Maximal 0-1-fillings of moon polyominoes with restricted chain lengths and rc-graphs, Adv. in Appl. Math., Volume 48 (2012) no. 2, pp. 290-305 | DOI | MR | Zbl

[29] Stump, Christian A new perspective on k-triangulations, J. Combin. Theory Ser. A, Volume 118 (2011) no. 6, pp. 1794-1800 | DOI | MR | Zbl

[30] Tonks, Andy Relating the associahedron and the permutohedron, Operads: Proceedings of Renaissance Conferences (Hartford, CT/Luminy, 1995) (Contemp. Math.), Volume 202, Amer. Math. Soc., Providence, RI (1997), pp. 33-36 | MR | Zbl

[31] Viennot, Xavier Catalan tableaux and the asymmetric exclusion process, 19th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2007) (2007) https://igm.univ-mlv.fr/...

[32] Woo, Alexander Catalan numbers and Schubert polynomials for w=1(n+1)...2, 2004 | arXiv | Zbl

Cited by Sources: