We show that for any permutation $\omega $, the increasing flip graph on acyclic pipe dreams with exiting permutation $\omega $ is a lattice quotient of the interval $[e,\omega ]$ of the weak order. We then discuss conjectural generalizations of this result to acyclic facets of subword complexes on arbitrary finite Coxeter groups.
Revised:
Accepted:
Published online:
Keywords: lattices, lattice congruences, pipe dreams, subword complexes
Bergeron, Nantel 1; Cartier, Noémie 2; Ceballos, Cesar 3; Pilaud, Vincent 4

@article{ALCO_2025__8_3_817_0, author = {Bergeron, Nantel and Cartier, No\'emie and Ceballos, Cesar and Pilaud, Vincent}, title = {Lattices of acyclic pipe dreams}, journal = {Algebraic Combinatorics}, pages = {817--856}, publisher = {The Combinatorics Consortium}, volume = {8}, number = {3}, year = {2025}, doi = {10.5802/alco.423}, language = {en}, url = {https://alco.centre-mersenne.org/articles/10.5802/alco.423/} }
TY - JOUR AU - Bergeron, Nantel AU - Cartier, Noémie AU - Ceballos, Cesar AU - Pilaud, Vincent TI - Lattices of acyclic pipe dreams JO - Algebraic Combinatorics PY - 2025 SP - 817 EP - 856 VL - 8 IS - 3 PB - The Combinatorics Consortium UR - https://alco.centre-mersenne.org/articles/10.5802/alco.423/ DO - 10.5802/alco.423 LA - en ID - ALCO_2025__8_3_817_0 ER -
%0 Journal Article %A Bergeron, Nantel %A Cartier, Noémie %A Ceballos, Cesar %A Pilaud, Vincent %T Lattices of acyclic pipe dreams %J Algebraic Combinatorics %D 2025 %P 817-856 %V 8 %N 3 %I The Combinatorics Consortium %U https://alco.centre-mersenne.org/articles/10.5802/alco.423/ %R 10.5802/alco.423 %G en %F ALCO_2025__8_3_817_0
Bergeron, Nantel; Cartier, Noémie; Ceballos, Cesar; Pilaud, Vincent. Lattices of acyclic pipe dreams. Algebraic Combinatorics, Volume 8 (2025) no. 3, pp. 817-856. doi : 10.5802/alco.423. https://alco.centre-mersenne.org/articles/10.5802/alco.423/
[1] RC-graphs and Schubert polynomials, Experiment. Math., Volume 2 (1993) no. 4, pp. 257-269 | DOI | MR | Zbl
[2] Combinatorics of Coxeter groups, Graduate Texts in Mathematics, 231, Springer, New York, 2005, xiv+363 pages | MR | Zbl
[3] Permutation statistics and linear extensions of posets, J. Combin. Theory Ser. A, Volume 58 (1991) no. 1, pp. 85-114 | DOI | MR | Zbl
[4] Acyclic pipe dreams, subword complexes and lattice quotients of weak order intervals, Sém. Lothar. Combin., Volume 89B (2023), Paper no. 58, 12 pages | MR
[5] Lattice properties of acyclic Cambrian pipe dreams, 2023 | arXiv | Zbl
[6] Subword complexes, cluster complexes, and generalized multi-associahedra, J. Algebraic Combin., Volume 39 (2014) no. 1, pp. 17-51 | DOI | MR | Zbl
[7] The -Tamari lattice via -trees, -bracket vectors, and subword complexes, Electron. J. Combin., Volume 27 (2020) no. 1, Paper no. 1.14, 31 pages | MR | Zbl
[8] The weak order on integer posets, Algebraic Combinatorics, Volume 2 (2019) no. 1, pp. 1-48 | DOI | Numdam | MR | Zbl
[9] The algebra of binary search trees, Theoret. Comput. Sci., Volume 339 (2005) no. 1, pp. 129-165 | DOI | MR | Zbl
[10] Reflection groups and Coxeter groups, Cambridge Studies in Advanced Mathematics, 29, Cambridge University Press, 1990, xii+204 pages | DOI
[11] Bruhat intervals, subword complexes and brick polyhedra for finite Coxeter groups, Math. Z., Volume 304 (2023) no. 2, Paper no. 24, 32 pages | MR | Zbl
[12] Subword complexes in Coxeter groups, Adv. Math., Volume 184 (2004) no. 1, pp. 161-176 | DOI | MR | Zbl
[13] Gröbner geometry of Schubert polynomials, Ann. of Math. (2), Volume 161 (2005) no. 3, pp. 1245-1318 | DOI | MR | Zbl
[14] Polynômes de Schubert, C. R. Math. Acad. Sci. Paris, Volume 294 (1982) no. 13, pp. 447-450 | Zbl
[15] Schubert polynomials and the Littlewood-Richardson rule, Lett. Math. Phys., Volume 10 (1985) no. 2-3, pp. 111-124 | DOI | MR | Zbl
[16] Realization of the Stasheff polytope, Arch. Math. (Basel), Volume 83 (2004) no. 3, pp. 267-278 | MR | Zbl
[17] Hopf algebra of the planar binary trees, Adv. Math., Volume 139 (1998) no. 2, pp. 293-309 | DOI | MR | Zbl
[18] Multitriangulations, pseudotriangulations and some problems of realization of polytopes, Ph. D. Thesis, Université Paris 7 & Universidad de Cantabria (2010) (Available online arXiv:1009.1605) | Zbl
[19] The greedy flip tree of a subword complex, 2012 | arXiv | Zbl
[20] Brick polytopes, lattice quotients, and Hopf algebras, J. Combin. Theory Ser. A, Volume 155 (2018), pp. 418-457 | DOI | MR | Zbl
[21] Multitriangulations, pseudotriangulations and primitive sorting networks, Discrete Comput. Geom., Volume 48 (2012) no. 1, pp. 142-191 | DOI | MR | Zbl
[22] The brick polytope of a sorting network, European J. Combin., Volume 33 (2012) no. 4, pp. 632-662 | DOI | MR | Zbl
[23] EL-labelings and canonical spanning trees for subword complexes, Discrete Geometry and Optimization (Bezdek, Karoly; Deza, Antoine; Ye, Yinyu, eds.) (Fields Institute Communications Series), Volume 69, Springer, 2013, pp. 213-248 | DOI | Zbl
[24] Brick polytopes of spherical subword complexes and generalized associahedra, Adv. Math., Volume 276 (2015), pp. 1-61 | DOI | MR | Zbl
[25] The enumeration of generalized Tamari intervals, Trans. Amer. Math. Soc., Volume 369 (2017) no. 7, pp. 5219-5239 | DOI | MR | Zbl
[26] Cambrian lattices, Adv. Math., Volume 205 (2006) no. 2, pp. 313-353 | DOI | MR | Zbl
[27] Lattice theory of the poset of regions, Lattice theory: special topics and applications. Vol. 2, Birkhäuser/Springer, Cham, 2016, pp. 399-487 | Zbl
[28] Maximal --fillings of moon polyominoes with restricted chain lengths and rc-graphs, Adv. in Appl. Math., Volume 48 (2012) no. 2, pp. 290-305 | DOI | MR | Zbl
[29] A new perspective on -triangulations, J. Combin. Theory Ser. A, Volume 118 (2011) no. 6, pp. 1794-1800 | DOI | MR | Zbl
[30] Relating the associahedron and the permutohedron, Operads: Proceedings of Renaissance Conferences (Hartford, CT/Luminy, 1995) (Contemp. Math.), Volume 202, Amer. Math. Soc., Providence, RI (1997), pp. 33-36 | MR | Zbl
[31] Catalan tableaux and the asymmetric exclusion process, 19th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2007) (2007) https://igm.univ-mlv.fr/...
[32] Catalan numbers and Schubert polynomials for , 2004 | arXiv | Zbl
Cited by Sources: