Centraliser algebras of monomial representations and applications in combinatorics
Algebraic Combinatorics, Volume 8 (2025) no. 3, pp. 687-710.

Centraliser algebras of monomial representations of finite groups may be constructed and studied using methods similar to those employed in the study of permutation groups. Guided by results of D. G. Higman and others, we give an explicit construction for a basis of the centraliser algebra of a monomial representation. The character table of this algebra is then constructed via character sums over double cosets. We locate the theory of group-developed and cocyclic-developed Hadamard matrices within this framework. We apply Gröbner bases to produce a new classification of highly symmetric complex Hadamard matrices.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/alco.426
Classification: 05B20, 20B25
Keywords: monomial representation, centraliser algebra, complex Hadamard matrix

Barrera Acevedo, Santiago 1; Ó Catháin, Padraig 2; Dietrich, Heiko 3; Egan, Ronan 4

1 La Trobe University Department of Mathematical and Physical Sciences Bundoora 3083 VIC Australia
2 Dublin City University Fiontar agus Scoil na Gaeilge Drumcondra, Dublin 9 Ireland
3 Monash University School of Mathematics Clayton 3800 VIC Australia
4 Dublin City University School of Mathematical Sciences Glasnevin, Dublin 9 Ireland
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{ALCO_2025__8_3_687_0,
     author = {Barrera Acevedo, Santiago and \'O Cath\'ain, Padraig and Dietrich, Heiko and Egan, Ronan},
     title = {Centraliser algebras of monomial representations and applications in combinatorics},
     journal = {Algebraic Combinatorics},
     pages = {687--710},
     publisher = {The Combinatorics Consortium},
     volume = {8},
     number = {3},
     year = {2025},
     doi = {10.5802/alco.426},
     language = {en},
     url = {https://alco.centre-mersenne.org/articles/10.5802/alco.426/}
}
TY  - JOUR
AU  - Barrera Acevedo, Santiago
AU  - Ó Catháin, Padraig
AU  - Dietrich, Heiko
AU  - Egan, Ronan
TI  - Centraliser algebras of monomial representations and applications in combinatorics
JO  - Algebraic Combinatorics
PY  - 2025
SP  - 687
EP  - 710
VL  - 8
IS  - 3
PB  - The Combinatorics Consortium
UR  - https://alco.centre-mersenne.org/articles/10.5802/alco.426/
DO  - 10.5802/alco.426
LA  - en
ID  - ALCO_2025__8_3_687_0
ER  - 
%0 Journal Article
%A Barrera Acevedo, Santiago
%A Ó Catháin, Padraig
%A Dietrich, Heiko
%A Egan, Ronan
%T Centraliser algebras of monomial representations and applications in combinatorics
%J Algebraic Combinatorics
%D 2025
%P 687-710
%V 8
%N 3
%I The Combinatorics Consortium
%U https://alco.centre-mersenne.org/articles/10.5802/alco.426/
%R 10.5802/alco.426
%G en
%F ALCO_2025__8_3_687_0
Barrera Acevedo, Santiago; Ó Catháin, Padraig; Dietrich, Heiko; Egan, Ronan. Centraliser algebras of monomial representations and applications in combinatorics. Algebraic Combinatorics, Volume 8 (2025) no. 3, pp. 687-710. doi : 10.5802/alco.426. https://alco.centre-mersenne.org/articles/10.5802/alco.426/

[1] Alperin, J. L.; Bell, Rowen B. Groups and representations, Graduate Texts in Mathematics, 162, Springer-Verlag, New York, 1995, x+194 pages | DOI | MR | Zbl

[2] Aschbacher, M. On the maximal subgroups of the finite classical groups, Invent. Math., Volume 76 (1984) no. 3, pp. 469-514 | DOI | MR | Zbl

[3] Barrera Acevedo, Santiago; Ó Catháin, Padraig; Dietrich, Heiko Constructing cocyclic Hadamard matrices of order 4p, J. Combin. Des., Volume 27 (2019) no. 11, pp. 627-642 | DOI | MR | Zbl

[4] Ben-Av, Radel; Dula, Giora; Goldberger, Assaf; Kotsireas, Ilias; Strassler, Yossi New weighing matrices via partitioned group actions, Discrete Math., Volume 347 (2024) no. 5, Paper no. 113908, 17 pages | DOI | MR | Zbl

[5] Beth, Thomas; Jungnickel, Dieter; Lenz, Hanfried Design theory. Vol. I, Encyclopedia of Mathematics and its Applications, 69, Cambridge University Press, 1999, xx+1100 pages | MR | Zbl

[6] Bosma, Wieb; Cannon, John; Playoust, Catherine The Magma algebra system. I. The user language, J. Symbolic Comput., Volume 24 (1997) no. 3-4, pp. 235-265 | DOI | MR | Zbl

[7] Brouwer, Andries E.; Van Maldeghem, H. Strongly regular graphs, Encyclopedia of Mathematics and its Applications, 182, Cambridge University Press, Cambridge, 2022, xvii+462 pages | DOI | MR | Zbl

[8] Browne, Patrick; Egan, Ronan; Hegarty, Fintan; Ó Catháin, Padraig A survey of the Hadamard maximal determinant problem, Electron. J. Combin., Volume 28 (2021) no. 4, Paper no. 4.41, 35 pages | DOI | MR | Zbl

[9] Bruzda, W.; Tadej, W.; Życzkowski, K. Catalogue of Complex Hadamard Matrices, online database, 2006 http://chaos.if.uj.edu.pl/~karol/hadamard/

[10] Chan, Ada Complex Hadamard Matrices and Strongly Regular Graphs, 2020 | arXiv | Zbl

[11] Chan, Ada; Godsil, Chris Type-II matrices and combinatorial structures, Combinatorica, Volume 30 (2010) no. 1, pp. 1-24 | DOI | MR | Zbl

[12] Cox, David A.; Little, John; O’Shea, Donal Ideals, varieties, and algorithms: An introduction to computational algebraic geometry and commutative algebra, Undergraduate Texts in Mathematics, Springer, Cham, 2015, xvi+646 pages | DOI | MR | Zbl

[13] Curtis, Charles W.; Fossum, Timothy V. On centralizer rings and characters of representations of finite groups, Math. Z., Volume 107 (1968), pp. 402-406 | DOI | MR | Zbl

[14] Curtis, Charles W.; Reiner, Irving Methods of representation theory. Vol. I: With applications to finite groups and orders, John Wiley & Sons, Inc., New York, 1981, xxi+819 pages | MR | Zbl

[15] Curtis, Charles W.; Reiner, Irving Representation theory of finite groups and associative algebras, AMS Chelsea Publishing, Providence, RI, 2006, xiv+689 pages | DOI | MR | Zbl

[16] de Launey, Warwick; Flannery, Dane Algebraic design theory, Mathematical Surveys and Monographs, vol. 175, American Mathematical Society, Providence, RI, 2011 | MR | Zbl

[17] Dixon, John D.; Mortimer, Brian Permutation groups, Graduate Texts in Mathematics, 163, Springer-Verlag, 1996, xii+346 pages | DOI | MR | Zbl

[18] Egan, Ronan; Flannery, Dane; Ó Catháin, Padraig Classifying cocyclic Butson Hadamard matrices, Algebraic design theory and Hadamard matrices (Springer Proc. Math. Stat.), Volume 133, Springer, Cham, 2015, pp. 93-106 | DOI | MR | Zbl

[19] Egan, Ronan; Flannery, Dane L. Automorphisms of generalized Sylvester Hadamard matrices, Discrete Math., Volume 340 (2017) no. 3, pp. 516-523 | DOI | MR | Zbl

[20] Egan, Ronan; Ó Catháin, Padraig Morphisms of Butson classes, Linear Algebra Appl., Volume 577 (2019), pp. 78-93 | DOI | MR | Zbl

[21] Egan, Ronan; Ó Catháin, Padraig; Swartz, Eric Spectra of Hadamard matrices, Australas. J. Combin., Volume 73 (2019), pp. 501-512 | MR | Zbl

[22] Gillespie, Neil I.; Ó Catháin, Padraig; Praeger, Cheryl E. Construction of the outer automorphism of S 6 via a complex Hadamard matrix, Math. Comput. Sci., Volume 12 (2018) no. 4, pp. 453-458 | DOI | MR | Zbl

[23] Goldberger, Assaf; Dula, Giora Cohomology-developed matrices: constructing families of weighing matrices and automorphism actions, J. Algebraic Combin., Volume 60 (2024) no. 3, pp. 603-665 | DOI | MR | Zbl

[24] Goldberger, Assaf; Kotsireas, Ilias Formal orthogonal pairs via monomial representations and cohomology, Sém. Lothar. Combin., Volume 84B (2020), Paper no. 68, 12 pages | MR | Zbl

[25] Group, The GAP GAP – Groups, Algorithms, and Programming

[26] Haagerup, Uffe Orthogonal maximal abelian *-subalgebras of the n×n matrices and cyclic n-roots, Operator algebras and quantum field theory (Rome, 1996), Int. Press, Cambridge, MA, 1997, pp. 296-322 | DOI | MR | Zbl

[27] Hall, Marshall Jr. Note on the Mathieu group M 12 , Arch. Math. (Basel), Volume 13 (1962), pp. 334-340 | DOI | MR | Zbl

[28] Hall, Marshall Jr. Group properties of Hadamard matrices, J. Austral. Math. Soc. Ser. A, Volume 21 (1976) no. 2, pp. 247-256 | DOI | MR | Zbl

[29] Hall, Marshall Jr. The theory of groups, Chelsea Publishing Co., 1976, xiii+434 pages | MR | Zbl

[30] Higman, D. G. Monomial representations, Intl. Sym. Th. Finite Groups, Volume 1 (1974) no. 1, pp. 55-68

[31] Higman, D. G. Coherent configurations. I. Ordinary representation theory, Geometriae Dedicata, Volume 4 (1975) no. 1, pp. 1-32 | DOI | MR | Zbl

[32] Higman, D. G. Coherent configurations. II. Weights, Geometriae Dedicata, Volume 5 (1976) no. 4, pp. 413-424 | DOI | MR | Zbl

[33] Higman, D. G. Weights and t-graphs, Bull. Soc. Math. Belg. Sér. A, Volume 42 (1990) no. 3, pp. 501-521 | MR | Zbl

[34] Horadam, Kathryn J. Hadamard matrices and their applications, Princeton University Press, 2007, xiv+263 pages | DOI | MR | Zbl

[35] Ikuta, Takuya; Munemasa, Akihiro Butson-type complex Hadamard matrices and association schemes on Galois rings of characteristic 4, Spec. Matrices, Volume 6 (2018), pp. 1-10 | DOI | MR | Zbl

[36] Ikuta, Takuya; Munemasa, Akihiro Bordered complex Hadamard matrices and strongly regular graphs, Interdiscip. Inform. Sci., Volume 27 (2021) no. 1, pp. 41-56 | DOI | MR | Zbl

[37] Ireland, Kenneth; Rosen, Michael A classical introduction to modern number theory, Graduate Texts in Mathematics, 84, Springer-Verlag, New York, 1990, xiv+389 pages | DOI | MR | Zbl

[38] Isaacs, I. Martin Character theory of finite groups, AMS Chelsea Publishing, Providence, RI, 2006, xii+310 pages | DOI | MR | Zbl

[39] James, Gordon; Liebeck, Martin Representations and characters of groups, Cambridge University Press, 2001, viii+458 pages | DOI | MR | Zbl

[40] Karpilovsky, Gregory The Schur multiplier, London Mathematical Society Monographs. New Series, 2, The Clarendon Press, Oxford University Press, New York, 1987, x+302 pages | MR | Zbl

[41] Liebeck, Martin W.; Saxl, Jan The finite primitive permutation groups of rank three, Bull. London Math. Soc., Volume 18 (1986) no. 2, pp. 165-172 | DOI | MR | Zbl

[42] Moorhouse, G. Eric The 2-transitive complex Hadamard matrices, preprint, 2001 https://ericmoorhouse.org/pub/complex.pdf

[43] Müller, Jürgen On Endomorphism Rings and Character Tables, Habilitationsschrift, RWTH Aachen (2003)

[44] Müller, Jürgen On the multiplicity-free actions of the sporadic simple groups, J. Algebra, Volume 320 (2008) no. 2, pp. 910-926 | DOI | MR | Zbl

[45] Munemasa, Akihiro; Watatani, Yasuo Paires orthogonales de sous-algèbres involutives, C. R. Acad. Sci. Paris Sér. I Math., Volume 314 (1992) no. 5, pp. 329-331 | MR | Zbl

[46] Ó Catháin, Padraig Difference sets and doubly transitive actions on Hadamard matrices, J. Combin. Theory Ser. A, Volume 119 (2012) no. 6, pp. 1235-1249 | DOI | MR | Zbl

[47] Ponasso, Guillermo Nuñez Combinatorics of Complex Maximal Determinant Matrices, Ph. D. Thesis, Worcester Polytechnic Institute (2023) | arXiv

[48] Pott, Alexander Finite geometry and character theory, Lecture Notes in Mathematics, 1601, Springer-Verlag, 1995, viii+181 pages | DOI | MR | Zbl

[49] Sagan, Bruce E. The symmetric group: representations, combinatorial algorithms, and symmetric functions, Graduate Texts in Mathematics, 203, Springer-Verlag, New York, 2001, xvi+238 pages | DOI | MR | Zbl

[50] Shafarevich, Igor R. Basic algebraic geometry. 1. Varieties in projective space, Springer, Heidelberg, 2013, xviii+310 pages | MR | Zbl

[51] Tadej, Wojciech; Życzkowski, Karol A concise guide to complex Hadamard matrices, Open Syst. Inf. Dyn., Volume 13 (2006) no. 2, pp. 133-177 | DOI | MR | Zbl

[52] Tamaschke, Olaf S-rings and the irreducible representations of finite groups, J. Algebra, Volume 1 (1964), pp. 215-232 | DOI | MR | Zbl

[53] Wielandt, Helmut Finite permutation groups, Translated from the German by R. Bercov, Academic Press, 1964, x+114 pages | MR | Zbl

Cited by Sources: