Centraliser algebras of monomial representations of finite groups may be constructed and studied using methods similar to those employed in the study of permutation groups. Guided by results of D. G. Higman and others, we give an explicit construction for a basis of the centraliser algebra of a monomial representation. The character table of this algebra is then constructed via character sums over double cosets. We locate the theory of group-developed and cocyclic-developed Hadamard matrices within this framework. We apply Gröbner bases to produce a new classification of highly symmetric complex Hadamard matrices.
Revised:
Accepted:
Published online:
Keywords: monomial representation, centraliser algebra, complex Hadamard matrix
Barrera Acevedo, Santiago 1; Ó Catháin, Padraig 2; Dietrich, Heiko 3; Egan, Ronan 4

@article{ALCO_2025__8_3_687_0, author = {Barrera Acevedo, Santiago and \'O Cath\'ain, Padraig and Dietrich, Heiko and Egan, Ronan}, title = {Centraliser algebras of monomial representations and applications in combinatorics}, journal = {Algebraic Combinatorics}, pages = {687--710}, publisher = {The Combinatorics Consortium}, volume = {8}, number = {3}, year = {2025}, doi = {10.5802/alco.426}, language = {en}, url = {https://alco.centre-mersenne.org/articles/10.5802/alco.426/} }
TY - JOUR AU - Barrera Acevedo, Santiago AU - Ó Catháin, Padraig AU - Dietrich, Heiko AU - Egan, Ronan TI - Centraliser algebras of monomial representations and applications in combinatorics JO - Algebraic Combinatorics PY - 2025 SP - 687 EP - 710 VL - 8 IS - 3 PB - The Combinatorics Consortium UR - https://alco.centre-mersenne.org/articles/10.5802/alco.426/ DO - 10.5802/alco.426 LA - en ID - ALCO_2025__8_3_687_0 ER -
%0 Journal Article %A Barrera Acevedo, Santiago %A Ó Catháin, Padraig %A Dietrich, Heiko %A Egan, Ronan %T Centraliser algebras of monomial representations and applications in combinatorics %J Algebraic Combinatorics %D 2025 %P 687-710 %V 8 %N 3 %I The Combinatorics Consortium %U https://alco.centre-mersenne.org/articles/10.5802/alco.426/ %R 10.5802/alco.426 %G en %F ALCO_2025__8_3_687_0
Barrera Acevedo, Santiago; Ó Catháin, Padraig; Dietrich, Heiko; Egan, Ronan. Centraliser algebras of monomial representations and applications in combinatorics. Algebraic Combinatorics, Volume 8 (2025) no. 3, pp. 687-710. doi : 10.5802/alco.426. https://alco.centre-mersenne.org/articles/10.5802/alco.426/
[1] Groups and representations, Graduate Texts in Mathematics, 162, Springer-Verlag, New York, 1995, x+194 pages | DOI | MR | Zbl
[2] On the maximal subgroups of the finite classical groups, Invent. Math., Volume 76 (1984) no. 3, pp. 469-514 | DOI | MR | Zbl
[3] Constructing cocyclic Hadamard matrices of order , J. Combin. Des., Volume 27 (2019) no. 11, pp. 627-642 | DOI | MR | Zbl
[4] New weighing matrices via partitioned group actions, Discrete Math., Volume 347 (2024) no. 5, Paper no. 113908, 17 pages | DOI | MR | Zbl
[5] Design theory. Vol. I, Encyclopedia of Mathematics and its Applications, 69, Cambridge University Press, 1999, xx+1100 pages | MR | Zbl
[6] The Magma algebra system. I. The user language, J. Symbolic Comput., Volume 24 (1997) no. 3-4, pp. 235-265 | DOI | MR | Zbl
[7] Strongly regular graphs, Encyclopedia of Mathematics and its Applications, 182, Cambridge University Press, Cambridge, 2022, xvii+462 pages | DOI | MR | Zbl
[8] A survey of the Hadamard maximal determinant problem, Electron. J. Combin., Volume 28 (2021) no. 4, Paper no. 4.41, 35 pages | DOI | MR | Zbl
[9] Catalogue of Complex Hadamard Matrices, online database, 2006 http://chaos.if.uj.edu.pl/~karol/hadamard/
[10] Complex Hadamard Matrices and Strongly Regular Graphs, 2020 | arXiv | Zbl
[11] Type-II matrices and combinatorial structures, Combinatorica, Volume 30 (2010) no. 1, pp. 1-24 | DOI | MR | Zbl
[12] Ideals, varieties, and algorithms: An introduction to computational algebraic geometry and commutative algebra, Undergraduate Texts in Mathematics, Springer, Cham, 2015, xvi+646 pages | DOI | MR | Zbl
[13] On centralizer rings and characters of representations of finite groups, Math. Z., Volume 107 (1968), pp. 402-406 | DOI | MR | Zbl
[14] Methods of representation theory. Vol. I: With applications to finite groups and orders, John Wiley & Sons, Inc., New York, 1981, xxi+819 pages | MR | Zbl
[15] Representation theory of finite groups and associative algebras, AMS Chelsea Publishing, Providence, RI, 2006, xiv+689 pages | DOI | MR | Zbl
[16] Algebraic design theory, Mathematical Surveys and Monographs, vol. 175, American Mathematical Society, Providence, RI, 2011 | MR | Zbl
[17] Permutation groups, Graduate Texts in Mathematics, 163, Springer-Verlag, 1996, xii+346 pages | DOI | MR | Zbl
[18] Classifying cocyclic Butson Hadamard matrices, Algebraic design theory and Hadamard matrices (Springer Proc. Math. Stat.), Volume 133, Springer, Cham, 2015, pp. 93-106 | DOI | MR | Zbl
[19] Automorphisms of generalized Sylvester Hadamard matrices, Discrete Math., Volume 340 (2017) no. 3, pp. 516-523 | DOI | MR | Zbl
[20] Morphisms of Butson classes, Linear Algebra Appl., Volume 577 (2019), pp. 78-93 | DOI | MR | Zbl
[21] Spectra of Hadamard matrices, Australas. J. Combin., Volume 73 (2019), pp. 501-512 | MR | Zbl
[22] Construction of the outer automorphism of via a complex Hadamard matrix, Math. Comput. Sci., Volume 12 (2018) no. 4, pp. 453-458 | DOI | MR | Zbl
[23] Cohomology-developed matrices: constructing families of weighing matrices and automorphism actions, J. Algebraic Combin., Volume 60 (2024) no. 3, pp. 603-665 | DOI | MR | Zbl
[24] Formal orthogonal pairs via monomial representations and cohomology, Sém. Lothar. Combin., Volume 84B (2020), Paper no. 68, 12 pages | MR | Zbl
[25] GAP – Groups, Algorithms, and Programming
[26] Orthogonal maximal abelian -subalgebras of the matrices and cyclic -roots, Operator algebras and quantum field theory (Rome, 1996), Int. Press, Cambridge, MA, 1997, pp. 296-322 | DOI | MR | Zbl
[27] Note on the Mathieu group , Arch. Math. (Basel), Volume 13 (1962), pp. 334-340 | DOI | MR | Zbl
[28] Group properties of Hadamard matrices, J. Austral. Math. Soc. Ser. A, Volume 21 (1976) no. 2, pp. 247-256 | DOI | MR | Zbl
[29] The theory of groups, Chelsea Publishing Co., 1976, xiii+434 pages | MR | Zbl
[30] Monomial representations, Intl. Sym. Th. Finite Groups, Volume 1 (1974) no. 1, pp. 55-68
[31] Coherent configurations. I. Ordinary representation theory, Geometriae Dedicata, Volume 4 (1975) no. 1, pp. 1-32 | DOI | MR | Zbl
[32] Coherent configurations. II. Weights, Geometriae Dedicata, Volume 5 (1976) no. 4, pp. 413-424 | DOI | MR | Zbl
[33] Weights and -graphs, Bull. Soc. Math. Belg. Sér. A, Volume 42 (1990) no. 3, pp. 501-521 | MR | Zbl
[34] Hadamard matrices and their applications, Princeton University Press, 2007, xiv+263 pages | DOI | MR | Zbl
[35] Butson-type complex Hadamard matrices and association schemes on Galois rings of characteristic 4, Spec. Matrices, Volume 6 (2018), pp. 1-10 | DOI | MR | Zbl
[36] Bordered complex Hadamard matrices and strongly regular graphs, Interdiscip. Inform. Sci., Volume 27 (2021) no. 1, pp. 41-56 | DOI | MR | Zbl
[37] A classical introduction to modern number theory, Graduate Texts in Mathematics, 84, Springer-Verlag, New York, 1990, xiv+389 pages | DOI | MR | Zbl
[38] Character theory of finite groups, AMS Chelsea Publishing, Providence, RI, 2006, xii+310 pages | DOI | MR | Zbl
[39] Representations and characters of groups, Cambridge University Press, 2001, viii+458 pages | DOI | MR | Zbl
[40] The Schur multiplier, London Mathematical Society Monographs. New Series, 2, The Clarendon Press, Oxford University Press, New York, 1987, x+302 pages | MR | Zbl
[41] The finite primitive permutation groups of rank three, Bull. London Math. Soc., Volume 18 (1986) no. 2, pp. 165-172 | DOI | MR | Zbl
[42] The 2-transitive complex Hadamard matrices, preprint, 2001 https://ericmoorhouse.org/pub/complex.pdf
[43] On Endomorphism Rings and Character Tables, Habilitationsschrift, RWTH Aachen (2003)
[44] On the multiplicity-free actions of the sporadic simple groups, J. Algebra, Volume 320 (2008) no. 2, pp. 910-926 | DOI | MR | Zbl
[45] Paires orthogonales de sous-algèbres involutives, C. R. Acad. Sci. Paris Sér. I Math., Volume 314 (1992) no. 5, pp. 329-331 | MR | Zbl
[46] Difference sets and doubly transitive actions on Hadamard matrices, J. Combin. Theory Ser. A, Volume 119 (2012) no. 6, pp. 1235-1249 | DOI | MR | Zbl
[47] Combinatorics of Complex Maximal Determinant Matrices, Ph. D. Thesis, Worcester Polytechnic Institute (2023) | arXiv
[48] Finite geometry and character theory, Lecture Notes in Mathematics, 1601, Springer-Verlag, 1995, viii+181 pages | DOI | MR | Zbl
[49] The symmetric group: representations, combinatorial algorithms, and symmetric functions, Graduate Texts in Mathematics, 203, Springer-Verlag, New York, 2001, xvi+238 pages | DOI | MR | Zbl
[50] Basic algebraic geometry. 1. Varieties in projective space, Springer, Heidelberg, 2013, xviii+310 pages | MR | Zbl
[51] A concise guide to complex Hadamard matrices, Open Syst. Inf. Dyn., Volume 13 (2006) no. 2, pp. 133-177 | DOI | MR | Zbl
[52] -rings and the irreducible representations of finite groups, J. Algebra, Volume 1 (1964), pp. 215-232 | DOI | MR | Zbl
[53] Finite permutation groups, Translated from the German by R. Bercov, Academic Press, 1964, x+114 pages | MR | Zbl
Cited by Sources: