We construct a bijection between certain Deodhar components of a braid variety constructed from an affine Kac–Moody group of type $A_{n-1}$ and vertex-labeled trees on $n$ vertices. By an argument of Galashin, Lam, and Williams using Opdam’s trace formula in the affine Hecke algebra and an identity due to Haglund, we obtain an elaborate new proof for the enumeration of the number of vertex-labeled trees on $n$ vertices.
Accepted:
Published online:
Keywords: braid variety, affine symmetric group, Opdam trace formula, affine Hecke algebra, Cayley’s theorem, tree, Deodhar decomposition
Banaian, Esther 1; Hoang, Anh Trong Nam 2; Kelley, Elizabeth 3; Miller, Weston 4; Stack, Jason 5; Stephen, Carolyn 6; Williams, Nathan 7

@article{ALCO_2025__8_4_971_0, author = {Banaian, Esther and Hoang, Anh Trong Nam and Kelley, Elizabeth and Miller, Weston and Stack, Jason and Stephen, Carolyn and Williams, Nathan}, title = {An elaborate new proof of {Cayley{\textquoteright}s} formula}, journal = {Algebraic Combinatorics}, pages = {971--995}, publisher = {The Combinatorics Consortium}, volume = {8}, number = {4}, year = {2025}, doi = {10.5802/alco.429}, language = {en}, url = {https://alco.centre-mersenne.org/articles/10.5802/alco.429/} }
TY - JOUR AU - Banaian, Esther AU - Hoang, Anh Trong Nam AU - Kelley, Elizabeth AU - Miller, Weston AU - Stack, Jason AU - Stephen, Carolyn AU - Williams, Nathan TI - An elaborate new proof of Cayley’s formula JO - Algebraic Combinatorics PY - 2025 SP - 971 EP - 995 VL - 8 IS - 4 PB - The Combinatorics Consortium UR - https://alco.centre-mersenne.org/articles/10.5802/alco.429/ DO - 10.5802/alco.429 LA - en ID - ALCO_2025__8_4_971_0 ER -
%0 Journal Article %A Banaian, Esther %A Hoang, Anh Trong Nam %A Kelley, Elizabeth %A Miller, Weston %A Stack, Jason %A Stephen, Carolyn %A Williams, Nathan %T An elaborate new proof of Cayley’s formula %J Algebraic Combinatorics %D 2025 %P 971-995 %V 8 %N 4 %I The Combinatorics Consortium %U https://alco.centre-mersenne.org/articles/10.5802/alco.429/ %R 10.5802/alco.429 %G en %F ALCO_2025__8_4_971_0
Banaian, Esther; Hoang, Anh Trong Nam; Kelley, Elizabeth; Miller, Weston; Stack, Jason; Stephen, Carolyn; Williams, Nathan. An elaborate new proof of Cayley’s formula. Algebraic Combinatorics, Volume 8 (2025) no. 4, pp. 971-995. doi : 10.5802/alco.429. https://alco.centre-mersenne.org/articles/10.5802/alco.429/
[1] Combinatorics of Tesler matrices in the theory of parking functions and diagonal harmonics, J. Comb., Volume 3 (2012) no. 3, pp. 451-494 | DOI | MR | Zbl
[2] Flag manifolds over semifields, Algebra Number Theory, Volume 15 (2021) no. 8, pp. 2037-2069 | DOI | MR | Zbl
[3] Combinatorics of Coxeter groups, Graduate Texts in Mathematics, 231, Springer, New York, 2005, xiv+363 pages | MR | Zbl
[4] A theorem on trees., Quart. J., Volume 23 (1888), pp. 376-378 | Zbl
[5] On some geometric aspects of Bruhat orderings. I. A finer decomposition of Bruhat cells, Invent. Math., Volume 79 (1985) no. 3, pp. 499-511 | DOI | MR | Zbl
[6] Rational noncrossing Coxeter-Catalan combinatorics, Proc. Lond. Math. Soc. (3), Volume 129 (2024) no. 4, Paper no. e12643, 50 pages | DOI | MR | Zbl
[7] Transitive factorisations into transpositions and holomorphic mappings on the sphere, Proc. Amer. Math. Soc., Volume 125 (1997) no. 1, pp. 51-60 | DOI | MR | Zbl
[8] Tree-like properties of cycle factorizations, J. Combin. Theory Ser. A, Volume 98 (2002) no. 1, pp. 106-117 | DOI | MR | Zbl
[9] A polynomial expression for the Hilbert series of the quotient ring of diagonal coinvariants, Adv. Math., Volume 227 (2011) no. 5, pp. 2092-2106 | DOI | MR | Zbl
[10] Representations of Coxeter groups and Hecke algebras, Invent. Math., Volume 53 (1979) no. 2, pp. 165-184 | DOI | MR | Zbl
[11] The probability that an operator is nilpotent, Amer. Math. Monthly, Volume 128 (2021) no. 4, pp. 371-375 | DOI | MR | Zbl
[12] Computing reflection length in an affine Coxeter group, Trans. Amer. Math. Soc., Volume 371 (2019) no. 6, pp. 4097-4127 | DOI | MR | Zbl
[13] Bounding reflection length in an affine Coxeter group, J. Algebraic Combin., Volume 34 (2011) no. 4, pp. 711-719 | DOI | MR | Zbl
[14] A generating function for the trace of the Iwahori-Hecke algebra, Studies in memory of Issai Schur (Chevaleret/Rehovot, 2000) (Progr. Math.), Volume 210, Birkhäuser Boston, Boston, MA, 2003, pp. 301-323 | DOI | MR | Zbl
[15] Sage-Combinat: enhancing Sage as a toolbox for computer exploration in algebraic combinatorics, 2008 (http://combinat.sagemath.org)
[16] SageMath, the Sage Mathematics Software System (Version 9.4) (2021) (https://www.sagemath.org)
[17] Parking functions and noncrossing partitions, Electron. J. Combin., Volume 4 (1997) no. 2, Paper no. 20, 14 pages | DOI | MR | Zbl
[18] Combinatorics and braid varieties, Open problems in algebraic combinatorics (Proc. Sympos. Pure Math.), Volume 110, Amer. Math. Soc., Providence, RI, 2024, pp. 93-112 | DOI | MR
Cited by Sources: