We prove a formula for the degrees of Ikeda and Naruse’s $P$-Grothendieck polynomials using combinatorics of shifted tableaux. We show this formula can be used in conjunction with results of Hamaker, Marberg, and Pawlowski to obtain an upper bound on the Castelnuovo–Mumford regularity of certain Pfaffian varieties known as vexillary skew-symmetric matrix Schubert varieties. Similar combinatorics additionally yields a new formula for the degree of Grassmannian Grothendieck polynomials and the regularity of Grassmannian matrix Schubert varieties, complementing a 2021 formula of Rajchgot, Ren, Robichaux, St. Dizier, and Weigandt.
Revised:
Accepted:
Published online:
Keywords: Pfaffian variety, $P$-Grothendieck polynomial, regularity, skew-symmetric matrix Schubert variety
Pechenik, Oliver 1; St.Denis, Matthew 1

@article{ALCO_2025__8_4_897_0, author = {Pechenik, Oliver and St.Denis, Matthew}, title = {Degrees of $P${-Grothendieck} polynomials and regularity of {Pfaffian} varieties}, journal = {Algebraic Combinatorics}, pages = {897--923}, publisher = {The Combinatorics Consortium}, volume = {8}, number = {4}, year = {2025}, doi = {10.5802/alco.431}, language = {en}, url = {https://alco.centre-mersenne.org/articles/10.5802/alco.431/} }
TY - JOUR AU - Pechenik, Oliver AU - St.Denis, Matthew TI - Degrees of $P$-Grothendieck polynomials and regularity of Pfaffian varieties JO - Algebraic Combinatorics PY - 2025 SP - 897 EP - 923 VL - 8 IS - 4 PB - The Combinatorics Consortium UR - https://alco.centre-mersenne.org/articles/10.5802/alco.431/ DO - 10.5802/alco.431 LA - en ID - ALCO_2025__8_4_897_0 ER -
%0 Journal Article %A Pechenik, Oliver %A St.Denis, Matthew %T Degrees of $P$-Grothendieck polynomials and regularity of Pfaffian varieties %J Algebraic Combinatorics %D 2025 %P 897-923 %V 8 %N 4 %I The Combinatorics Consortium %U https://alco.centre-mersenne.org/articles/10.5802/alco.431/ %R 10.5802/alco.431 %G en %F ALCO_2025__8_4_897_0
Pechenik, Oliver; St.Denis, Matthew. Degrees of $P$-Grothendieck polynomials and regularity of Pfaffian varieties. Algebraic Combinatorics, Volume 8 (2025) no. 4, pp. 897-923. doi : 10.5802/alco.431. https://alco.centre-mersenne.org/articles/10.5802/alco.431/
[1] Enumerative combinatorics of Young tableaux, Monographs and Textbooks in Pure and Applied Mathematics, 115, Marcel Dekker, Inc., New York, 1988, xx+509 pages | MR | Zbl
[2] A criterion for detecting -regularity, Invent. Math., Volume 87 (1987) no. 1, pp. 1-11 | DOI | MR | Zbl
[3] On the dual graphs of Cohen-Macaulay algebras, Int. Math. Res. Not. IMRN (2015) no. 17, pp. 8085-8115 | DOI | MR | Zbl
[4] A Littlewood-Richardson rule for the -theory of Grassmannians, Acta Math., Volume 189 (2002) no. 1, pp. 37-78 | DOI | MR | Zbl
[5] Pieri rules for the -theory of cominuscule Grassmannians, J. Reine Angew. Math., Volume 668 (2012), pp. 109-132 | DOI | MR | Zbl
[6] Some results and questions on Castelnuovo-Mumford regularity, Syzygies and Hilbert functions (Lect. Notes Pure Appl. Math.), Volume 254, Chapman & Hall/CRC, Boca Raton, FL, 2007, pp. 1-40 | Zbl
[7] Expanding -theoretic Schur -functions, Algebr. Comb., Volume 6 (2023) no. 6, pp. 1419-1445 | DOI | Numdam | MR | Zbl
[8] Ladder determinantal rings, J. Pure Appl. Algebra, Volume 98 (1995) no. 2, pp. 119-134 | DOI | MR
[9] Universal Gröbner bases and Cartwright-Sturmfels ideals, Int. Math. Res. Not. IMRN (2020) no. 7, pp. 1979-1991 | DOI | MR
[10] Radical generic initial ideals, Vietnam J. Math., Volume 50 (2022) no. 3, pp. 807-827 | DOI | MR
[11] Ladder determinantal rings have rational singularities, Adv. Math., Volume 132 (1997) no. 1, pp. 120-147 | DOI | MR
[12] Ideals, varieties, and algorithms: An introduction to computational algebraic geometry and commutative algebra, Undergraduate Texts in Mathematics, Springer, Cham, 2015, xvi+646 pages | DOI | MR
[13] G-biliaison of ladder Pfaffian varieties, J. Algebra, Volume 321 (2009) no. 9, pp. 2637-2649 | DOI | MR
[14] Invariants of ideals generated by Pfaffians, Commutative algebra and its connections to geometry (Contemp. Math.), Volume 555, Amer. Math. Soc., Providence, RI, 2011, pp. 47-62 | DOI | MR
[15] Gröbner bases of ideals cogenerated by Pfaffians, J. Pure Appl. Algebra, Volume 215 (2011) no. 5, pp. 812-821 | DOI | MR
[16] On the degree of Grothendieck polynomials, Algebr. Comb., Volume 7 (2024) no. 3, pp. 627-658 | MR
[17] Commutative algebra. With a view toward algebraic geometry, Graduate Texts in Mathematics, 150, Springer-Verlag, New York, 1995, xvi+785 pages | DOI | MR
[18] Gröbner bases in commutative algebra, Graduate Studies in Mathematics, 130, American Mathematical Society, Providence, RI, 2012, xii+164 pages | MR
[19] Two-sided mixed ladder determinantal ideals via Schubert varieties, in preparation, 2025
[20] Toric matrix Schubert varieties and their polytopes, Proc. Amer. Math. Soc., Volume 144 (2016) no. 12, pp. 5081-5096 | DOI | MR
[21] Schur and Schubert polynomials as Thom polynomials—cohomology of moduli spaces, Cent. Eur. J. Math., Volume 1 (2003) no. 4, pp. 418-434 | DOI | MR
[22] Matrix Schubert varieties and Gaussian conditional independence models, J. Algebraic Combin., Volume 44 (2016) no. 4, pp. 1009-1046 | DOI | MR
[23] Flags, Schubert polynomials, degeneracy loci, and determinantal formulas, Duke Math. J., Volume 65 (1992) no. 3, pp. 381-420 | DOI | MR
[24] Young tableaux: With applications to representation theory and geometry, London Mathematical Society Student Texts, 35, Cambridge University Press, Cambridge, 1997, x+260 pages | MR
[25] Computation of the -invariant of ladder determinantal rings, J. Algebra Appl., Volume 14 (2015) no. 9, Paper no. 1540014, 24 pages | DOI | MR
[26] Algebraic combinatorics, Chapman and Hall Mathematics Series, Chapman & Hall, New York, 1993, xvi+362 pages | MR
[27] Mixed ladder determinantal varieties, J. Algebra, Volume 231 (2000) no. 1, pp. 104-137 | DOI | MR
[28] Vexillary Grothendieck Polynomials via Bumpless Pipe Dreams, 2022 | arXiv
[29] M-convexity of vexillary Grothendieck polynomials via bubbling, SIAM J. Discrete Math., Volume 38 (2024) no. 3, pp. 2194-2225 | DOI | MR
[30] Fixed-point-free involutions and Schur -positivity, J. Comb., Volume 11 (2020) no. 1, pp. 65-110 | DOI | MR
[31] Involution pipe dreams, Canad. J. Math., Volume 74 (2022) no. 5, pp. 1310-1346 | DOI | MR
[32] Gröbner geometry of Schubert polynomials through ice, Adv. Math., Volume 398 (2022), Paper no. 108228, 29 pages | DOI | MR
[33] Gröbner bases and multiplicity of determinantal and Pfaffian ideals, Adv. Math., Volume 96 (1992) no. 1, pp. 1-37 | DOI | MR
[34] Cohen-Macaulay rings, invariant theory, and the generic perfection of determinantal loci, Amer. J. Math., Volume 93 (1971), pp. 1020-1058 | DOI | MR
[35] On the -rationality and cohomological properties of matrix Schubert varieties, Illinois J. Math., Volume 57 (2013) no. 1, pp. 1-15 | DOI | MR
[36] -theoretic analogues of factorial Schur - and -functions, Adv. Math., Volume 243 (2013), pp. 22-66 | DOI | MR
[37] Bumping algorithm for set-valued shifted tableaux, 23rd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2011) (Discrete Math. Theor. Comput. Sci. Proc., AO), Assoc. Discrete Math. Theor. Comput. Sci., Nancy, 2011, pp. 527-538 | MR
[38] A proof of -theoretic Littlewood-Richardson rules by Bender-Knuth-type involutions, Math. Res. Lett., Volume 21 (2014) no. 2, pp. 333-339 | DOI | MR
[39] Diagonal degenerations of matrix Schubert varieties, Algebr. Comb., Volume 6 (2023) no. 4, pp. 1073-1094 | Numdam | MR
[40] Bumpless pipe dreams encode Gröbner geometry of Schubert polynomials, 2021 | arXiv
[41] Gröbner geometry of Schubert polynomials, Ann. of Math. (2), Volume 161 (2005) no. 3, pp. 1245-1318 | DOI | MR
[42] Gröbner geometry of vertex decompositions and of flagged tableaux, J. Reine Angew. Math., Volume 630 (2009), pp. 1-31 | DOI | MR
[43] Structure de Hopf de l’anneau de cohomologie et de l’anneau de Grothendieck d’une variété de drapeaux, C. R. Acad. Sci. Paris Sér. I Math., Volume 295 (1982) no. 11, pp. 629-633 | MR
[44] Bernstein-Sato polynomials for maximal minors and sub-maximal Pfaffians, Adv. Math., Volume 307 (2017), pp. 224-252 | DOI | MR
[45] A symplectic refinement of shifted Hecke insertion, J. Combin. Theory Ser. A, Volume 173 (2020), Paper no. 105216, 50 pages | DOI | MR
[46] -theory formulas for orthogonal and symplectic orbit closures, Adv. Math., Volume 372 (2020), Paper no. 107299, 43 pages | DOI | MR
[47] On some properties of symplectic Grothendieck polynomials, J. Pure Appl. Algebra, Volume 225 (2021) no. 1, Paper no. 106463, 22 pages | DOI | MR
[48] Gröbner geometry for skew-symmetric matrix Schubert varieties, Adv. Math., Volume 405 (2022), Paper no. 108488, 56 pages | DOI | MR
[49] Key and Lascoux polynomials for symmetric orbit closures, 2023 | arXiv
[50] On the support of Grothendieck polynomials, Ann. Comb., Volume 29 (2025) no. 2, pp. 541-562 | DOI | MR
[51] Combinatorial commutative algebra, Graduate Texts in Mathematics, 227, Springer-Verlag, New York, 2005, xiv+417 pages | MR
[52] The irreducibility of ladder determinantal varieties, J. Algebra, Volume 102 (1986) no. 1, pp. 162-185 | DOI | MR
[53] Top-degree components of Grothendieck and Lascoux polynomials, Algebr. Comb., Volume 7 (2024) no. 1, pp. 109-135 | DOI | MR
[54] Castelnuovo-Mumford regularity of matrix Schubert varieties, Selecta Math. (N.S.), Volume 30 (2024) no. 4, Paper no. 66, 44 pages | DOI | MR
[55] Genomic tableaux, J. Algebraic Combin., Volume 45 (2017) no. 3, pp. 649-685 | DOI | MR
[56] Adhérences d’orbites des sous-groupes de Borel dans les espaces symétriques, Ph. D. Thesis, Université Joseph-Fourier - Grenoble I (2001)
[57] Algebro-geometric applications of Schur - and -polynomials, Topics in invariant theory (Paris, 1989/1990) (Lecture Notes in Math.), Volume 1478, Springer, Berlin, 1991, pp. 130-191 | DOI | MR
[58] Deformations of permutation representations of Coxeter groups, J. Algebraic Combin., Volume 37 (2013) no. 3, pp. 455-502 | DOI | MR
[59] Degrees of symmetric Grothendieck polynomials and Castelnuovo-Mumford regularity, Proc. Amer. Math. Soc., Volume 149 (2021) no. 4, pp. 1405-1416 | DOI | MR
[60] Castelnuovo-Mumford regularity of ladder determinantal varieties and patches of Grassmannian Schubert varieties, J. Algebra, Volume 617 (2023), pp. 160-191 | DOI | MR
[61] Castelnuovo-Mumford regularity for -avoiding Kazhdan-Lusztig varieties, 2023 | arXiv
[62] Über die Darstellung der symmetrischen und der alternierenden Gruppe durch gebrochene lineare Substitutionen, J. Reine Angew. Math., Volume 139 (1911), pp. 155-250 | DOI | MR
[63] A jeu de taquin theory for increasing tableaux, with applications to -theoretic Schubert calculus, Algebra Number Theory, Volume 3 (2009) no. 2, pp. 121-148 | DOI | MR
[64] Énumérons! De la combinatoire énumérative classique aux nouvelles combinatoires: bijective, algébrique, expérimentale, quantique et...magique!, Leçons de mathématiques d’aujourd’hui. Vol. 3 (Le Sel et le Fer), Volume 17, Cassini, Paris, 2007, pp. 165-238 | MR
[65] Governing singularities of Schubert varieties, J. Algebra, Volume 320 (2008) no. 2, pp. 495-520 | DOI | MR
[66] Polynomials for symmetric orbit closures in the flag variety, Transform. Groups, Volume 22 (2017) no. 1, pp. 267-290 | DOI | MR
Cited by Sources: