Explicit forms in lower degrees of rank 2 cluster scattering diagrams
Algebraic Combinatorics, Volume 8 (2025) no. 4, pp. 1021-1067.

In this paper, we study wall elements of rank 2 cluster scattering diagrams based on dilogarithm elements. We derive two major results. First, we give a method to calculate wall elements in lower degrees. By this method, we may see the explicit forms of wall elements including the Badlands, which is the complement of $G$-fan. In this paper, we write one up to 7 degrees. Also, by using this method, we derive some walls independent of their degrees. Second, we find a certain admissible form of them. In the proof of these facts, we introduce a matrix action on a structure group, which we call a similarity transformation, and we argue the relation between this action and ordered products.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/alco.432
Classification: 13F60
Keywords: cluster algebra, scattering diagram

Akagi, Ryota 1

1 Nagoya University Chikusaku Hurocho Nagoya Japan
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{ALCO_2025__8_4_1021_0,
     author = {Akagi, Ryota},
     title = {Explicit forms in lower degrees of rank 2 cluster scattering diagrams},
     journal = {Algebraic Combinatorics},
     pages = {1021--1067},
     publisher = {The Combinatorics Consortium},
     volume = {8},
     number = {4},
     year = {2025},
     doi = {10.5802/alco.432},
     language = {en},
     url = {https://alco.centre-mersenne.org/articles/10.5802/alco.432/}
}
TY  - JOUR
AU  - Akagi, Ryota
TI  - Explicit forms in lower degrees of rank 2 cluster scattering diagrams
JO  - Algebraic Combinatorics
PY  - 2025
SP  - 1021
EP  - 1067
VL  - 8
IS  - 4
PB  - The Combinatorics Consortium
UR  - https://alco.centre-mersenne.org/articles/10.5802/alco.432/
DO  - 10.5802/alco.432
LA  - en
ID  - ALCO_2025__8_4_1021_0
ER  - 
%0 Journal Article
%A Akagi, Ryota
%T Explicit forms in lower degrees of rank 2 cluster scattering diagrams
%J Algebraic Combinatorics
%D 2025
%P 1021-1067
%V 8
%N 4
%I The Combinatorics Consortium
%U https://alco.centre-mersenne.org/articles/10.5802/alco.432/
%R 10.5802/alco.432
%G en
%F ALCO_2025__8_4_1021_0
Akagi, Ryota. Explicit forms in lower degrees of rank 2 cluster scattering diagrams. Algebraic Combinatorics, Volume 8 (2025) no. 4, pp. 1021-1067. doi : 10.5802/alco.432. https://alco.centre-mersenne.org/articles/10.5802/alco.432/

[1] Fomin, Sergey; Zelevinsky, Andrei Cluster algebras. I. Foundations, J. Amer. Math. Soc., Volume 15 (2002) no. 2, pp. 497-529 | DOI | MR | Zbl

[2] Gross, Mark; Hacking, Paul; Keel, Sean; Kontsevich, Maxim Canonical bases for cluster algebras, J. Amer. Math. Soc., Volume 31 (2018) no. 2, pp. 497-608 | DOI | MR | Zbl

[3] Jacobson, Nathan Lie algebras, Dover Publications, Inc., New York, 1979, ix+331 pages (Republication of the 1962 original) | MR

[4] Matsushita, Kodai Consistency relations of rank 2 cluster scattering diagrams of affine type and pentagon relation, 2021 | arXiv | Zbl

[5] Nakanishi, Tomoki Cluster algebras and scattering diagrams, MSJ Memoirs, 41, Mathematical Society of Japan, Tokyo, 2023, xiv+279 pages | DOI | MR | Zbl

[6] Reading, Nathan A combinatorial approach to scattering diagrams, Algebr. Comb., Volume 3 (2020) no. 3, pp. 603-636 | DOI | Numdam | MR | Zbl

[7] Reineke, Markus Cohomology of quiver moduli, functional equations, and integrality of Donaldson-Thomas type invariants, Compos. Math., Volume 147 (2011) no. 3, pp. 943-964 | DOI | MR | Zbl

[8] Reineke, Markus Wild quantum dilogarithm identities, Ann. Represent. Theory, Volume 1 (2024) no. 3, pp. 385-391 | DOI | MR | Zbl

[9] Spivey, Michael Z. The art of proving binomial identities, Discrete Mathematics and its Applications (Boca Raton), CRC Press, Boca Raton, FL, 2019, xiv+368 pages | DOI | MR | Zbl

Cited by Sources: