Cluster monomials in graph Laurent phenomenon algebras
Algebraic Combinatorics, Volume 8 (2025) no. 4, pp. 997-1019.

Laurent phenomenon algebras, first introduced by Lam and Pylyavskyy, are a generalization of cluster algebras that still possess many salient features of cluster algebras. Graph Laurent phenomenon algebras, defined by Lam and Pylyavskyy, are a subclass of Laurent phenomenon algebras whose structure is given by the data of a directed graph. In this paper, we prove that the cluster monomials of a graph Laurent phenomenon algebra form a linear basis, as conjectured by Lam and Pylyavskyy and analogous to a result for cluster algebras by Caldero and Keller. We also prove that, if the graph is a bidirected tree, the coefficients of the expansion of any monomial in terms of cluster monomials are nonnegative.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/alco.433
Classification: 13F60
Keywords: Laurent phenomenon algebras, cluster algebras, graph LP algebras, positivity.

Dantas e Moura, Guilherme Zeus 1; Telekicherla Kandalam, Ramanuja Charyulu 2; Woodruff, Dora 3

1 University of Waterloo Department of Combinatorics and Optimization 200 University Avenue West Waterloo, ON N2L 3G1 (Canada)
2 University of Minnesota School of Mathematics 206 Church Street SE Minneapolis, MN 55455 (USA)
3 Massachusetts Institute of Technology Department of Mathematics 77 Massachusetts Avenue Cambridge, MA 02139 (USA)
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{ALCO_2025__8_4_997_0,
     author = {Dantas e Moura, Guilherme Zeus and Telekicherla Kandalam, Ramanuja Charyulu and Woodruff, Dora},
     title = {Cluster monomials in graph {Laurent} phenomenon algebras},
     journal = {Algebraic Combinatorics},
     pages = {997--1019},
     publisher = {The Combinatorics Consortium},
     volume = {8},
     number = {4},
     year = {2025},
     doi = {10.5802/alco.433},
     language = {en},
     url = {https://alco.centre-mersenne.org/articles/10.5802/alco.433/}
}
TY  - JOUR
AU  - Dantas e Moura, Guilherme Zeus
AU  - Telekicherla Kandalam, Ramanuja Charyulu
AU  - Woodruff, Dora
TI  - Cluster monomials in graph Laurent phenomenon algebras
JO  - Algebraic Combinatorics
PY  - 2025
SP  - 997
EP  - 1019
VL  - 8
IS  - 4
PB  - The Combinatorics Consortium
UR  - https://alco.centre-mersenne.org/articles/10.5802/alco.433/
DO  - 10.5802/alco.433
LA  - en
ID  - ALCO_2025__8_4_997_0
ER  - 
%0 Journal Article
%A Dantas e Moura, Guilherme Zeus
%A Telekicherla Kandalam, Ramanuja Charyulu
%A Woodruff, Dora
%T Cluster monomials in graph Laurent phenomenon algebras
%J Algebraic Combinatorics
%D 2025
%P 997-1019
%V 8
%N 4
%I The Combinatorics Consortium
%U https://alco.centre-mersenne.org/articles/10.5802/alco.433/
%R 10.5802/alco.433
%G en
%F ALCO_2025__8_4_997_0
Dantas e Moura, Guilherme Zeus; Telekicherla Kandalam, Ramanuja Charyulu; Woodruff, Dora. Cluster monomials in graph Laurent phenomenon algebras. Algebraic Combinatorics, Volume 8 (2025) no. 4, pp. 997-1019. doi : 10.5802/alco.433. https://alco.centre-mersenne.org/articles/10.5802/alco.433/

[1] Caldero, Philippe; Keller, Bernhard From triangulated categories to cluster algebras, Invent. Math., Volume 172 (2008) no. 1, pp. 169-211 | DOI | MR | Zbl

[2] Chekhov, Leonid; Shapiro, Michael Teichmüller spaces of Riemann surfaces with orbifold points of arbitrary order and cluster variables, Int. Math. Res. Not. IMRN (2014) no. 10, pp. 2746-2772 | DOI | MR | Zbl

[3] Fomin, Sergey; Shapiro, Michael; Thurston, Dylan Cluster algebras and triangulated surfaces. I. Cluster complexes, Acta Math., Volume 201 (2008) no. 1, pp. 83-146 | DOI | MR | Zbl

[4] Fomin, Sergey; Zelevinsky, Andrei Cluster algebras. I. Foundations, J. Amer. Math. Soc., Volume 15 (2002) no. 2, pp. 497-529 | DOI | MR | Zbl

[5] Gekhtman, Michael; Shapiro, Michael; Vainshtein, Alek Cluster algebras and Poisson geometry, Mathematical Surveys and Monographs, 167, American Mathematical Society, Providence, RI, 2010, xvi+246 pages | DOI | MR | Zbl

[6] Lam, Thomas; Pylyavskyy, Pavlo Laurent phenomenon algebras, Camb. J. Math., Volume 4 (2016) no. 1, pp. 121-162 | DOI | MR | Zbl

[7] Lam, Thomas; Pylyavskyy, Pavlo Linear Laurent phenomenon algebras, Int. Math. Res. Not. IMRN (2016) no. 10, pp. 3163-3203 | DOI | MR | Zbl

[8] Lee, Kyungyong; Schiffler, Ralf Positivity for cluster algebras, Ann. of Math. (2), Volume 182 (2015) no. 1, pp. 73-125 | DOI | MR | Zbl

Cited by Sources: