Laurent phenomenon algebras, first introduced by Lam and Pylyavskyy, are a generalization of cluster algebras that still possess many salient features of cluster algebras. Graph Laurent phenomenon algebras, defined by Lam and Pylyavskyy, are a subclass of Laurent phenomenon algebras whose structure is given by the data of a directed graph. In this paper, we prove that the cluster monomials of a graph Laurent phenomenon algebra form a linear basis, as conjectured by Lam and Pylyavskyy and analogous to a result for cluster algebras by Caldero and Keller. We also prove that, if the graph is a bidirected tree, the coefficients of the expansion of any monomial in terms of cluster monomials are nonnegative.
Revised:
Accepted:
Published online:
Keywords: Laurent phenomenon algebras, cluster algebras, graph LP algebras, positivity.
Dantas e Moura, Guilherme Zeus 1; Telekicherla Kandalam, Ramanuja Charyulu 2; Woodruff, Dora 3

@article{ALCO_2025__8_4_997_0, author = {Dantas e Moura, Guilherme Zeus and Telekicherla Kandalam, Ramanuja Charyulu and Woodruff, Dora}, title = {Cluster monomials in graph {Laurent} phenomenon algebras}, journal = {Algebraic Combinatorics}, pages = {997--1019}, publisher = {The Combinatorics Consortium}, volume = {8}, number = {4}, year = {2025}, doi = {10.5802/alco.433}, language = {en}, url = {https://alco.centre-mersenne.org/articles/10.5802/alco.433/} }
TY - JOUR AU - Dantas e Moura, Guilherme Zeus AU - Telekicherla Kandalam, Ramanuja Charyulu AU - Woodruff, Dora TI - Cluster monomials in graph Laurent phenomenon algebras JO - Algebraic Combinatorics PY - 2025 SP - 997 EP - 1019 VL - 8 IS - 4 PB - The Combinatorics Consortium UR - https://alco.centre-mersenne.org/articles/10.5802/alco.433/ DO - 10.5802/alco.433 LA - en ID - ALCO_2025__8_4_997_0 ER -
%0 Journal Article %A Dantas e Moura, Guilherme Zeus %A Telekicherla Kandalam, Ramanuja Charyulu %A Woodruff, Dora %T Cluster monomials in graph Laurent phenomenon algebras %J Algebraic Combinatorics %D 2025 %P 997-1019 %V 8 %N 4 %I The Combinatorics Consortium %U https://alco.centre-mersenne.org/articles/10.5802/alco.433/ %R 10.5802/alco.433 %G en %F ALCO_2025__8_4_997_0
Dantas e Moura, Guilherme Zeus; Telekicherla Kandalam, Ramanuja Charyulu; Woodruff, Dora. Cluster monomials in graph Laurent phenomenon algebras. Algebraic Combinatorics, Volume 8 (2025) no. 4, pp. 997-1019. doi : 10.5802/alco.433. https://alco.centre-mersenne.org/articles/10.5802/alco.433/
[1] From triangulated categories to cluster algebras, Invent. Math., Volume 172 (2008) no. 1, pp. 169-211 | DOI | MR | Zbl
[2] Teichmüller spaces of Riemann surfaces with orbifold points of arbitrary order and cluster variables, Int. Math. Res. Not. IMRN (2014) no. 10, pp. 2746-2772 | DOI | MR | Zbl
[3] Cluster algebras and triangulated surfaces. I. Cluster complexes, Acta Math., Volume 201 (2008) no. 1, pp. 83-146 | DOI | MR | Zbl
[4] Cluster algebras. I. Foundations, J. Amer. Math. Soc., Volume 15 (2002) no. 2, pp. 497-529 | DOI | MR | Zbl
[5] Cluster algebras and Poisson geometry, Mathematical Surveys and Monographs, 167, American Mathematical Society, Providence, RI, 2010, xvi+246 pages | DOI | MR | Zbl
[6] Laurent phenomenon algebras, Camb. J. Math., Volume 4 (2016) no. 1, pp. 121-162 | DOI | MR | Zbl
[7] Linear Laurent phenomenon algebras, Int. Math. Res. Not. IMRN (2016) no. 10, pp. 3163-3203 | DOI | MR | Zbl
[8] Positivity for cluster algebras, Ann. of Math. (2), Volume 182 (2015) no. 1, pp. 73-125 | DOI | MR | Zbl
Cited by Sources: