We study the geometry and topology of $\Delta $-Springer varieties associated with two-row partitions. These varieties were introduced in recent work by Griffin–Levinson–Woo to give a geometric realization of a symmetric function appearing in the Delta conjecture by Haglund–Remmel–Wilson. We provide an explicit and combinatorial description of the irreducible components of the two-row $\Delta $-Springer variety and compare it to the ordinary two-row Springer fiber as well as Kato’s exotic Springer fiber corresponding to a one-row bipartition. In addition to that, we extend the action of the symmetric group on the homology of the two-row $\Delta $-Springer variety to an action of a degenerate affine Hecke algebra and relate this action to a $\mathfrak{gl}_{2}$-tensor space.
Revised:
Accepted:
Published online:
Keywords: Springer theory, flag varieties, action on homology, degenerate affine Hecke algebra
Lacabanne, Abel 1; Vaz, Pedro 2; Wilbert, Arik 3

@article{ALCO_2025__8_4_925_0, author = {Lacabanne, Abel and Vaz, Pedro and Wilbert, Arik}, title = {Two-row {Delta} {Springer} varieties}, journal = {Algebraic Combinatorics}, pages = {925--953}, publisher = {The Combinatorics Consortium}, volume = {8}, number = {4}, year = {2025}, doi = {10.5802/alco.435}, language = {en}, url = {https://alco.centre-mersenne.org/articles/10.5802/alco.435/} }
TY - JOUR AU - Lacabanne, Abel AU - Vaz, Pedro AU - Wilbert, Arik TI - Two-row Delta Springer varieties JO - Algebraic Combinatorics PY - 2025 SP - 925 EP - 953 VL - 8 IS - 4 PB - The Combinatorics Consortium UR - https://alco.centre-mersenne.org/articles/10.5802/alco.435/ DO - 10.5802/alco.435 LA - en ID - ALCO_2025__8_4_925_0 ER -
%0 Journal Article %A Lacabanne, Abel %A Vaz, Pedro %A Wilbert, Arik %T Two-row Delta Springer varieties %J Algebraic Combinatorics %D 2025 %P 925-953 %V 8 %N 4 %I The Combinatorics Consortium %U https://alco.centre-mersenne.org/articles/10.5802/alco.435/ %R 10.5802/alco.435 %G en %F ALCO_2025__8_4_925_0
Lacabanne, Abel; Vaz, Pedro; Wilbert, Arik. Two-row Delta Springer varieties. Algebraic Combinatorics, Volume 8 (2025) no. 4, pp. 925-953. doi : 10.5802/alco.435. https://alco.centre-mersenne.org/articles/10.5802/alco.435/
[1] Orbit closures in the enhanced nilpotent cone, Adv. Math., Volume 219 (2008) no. 1, pp. 27-62 | DOI | MR | Zbl
[2] Partial resolutions of nilpotent varieties, Analysis and topology on singular spaces, II, III (Luminy, 1981) (Astérisque), Volume 101-102, Soc. Math. France, Paris, 1983, pp. 23-74 | Numdam | MR | Zbl
[3] Symmetric functions, parabolic category , and the Springer fiber, Duke Math. J., Volume 143 (2008) no. 1, pp. 41-79 | DOI | MR | Zbl
[4] Highest weight categories arising from Khovanov’s diagram algebra. II. Koszulity, Transform. Groups, Volume 15 (2010) no. 1, pp. 1-45 | DOI | MR | Zbl
[5] Highest weight categories arising from Khovanov’s diagram algebra I: cellularity, Mosc. Math. J., Volume 11 (2011) no. 4, p. 685-722, 821–822 | DOI | MR | Zbl
[6] Highest weight categories arising from Khovanov’s diagram algebra III: category , Represent. Theory, Volume 15 (2011), pp. 170-243 | DOI | MR | Zbl
[7] Highest weight categories arising from Khovanov’s diagram algebra IV: the general linear supergroup, J. Eur. Math. Soc. (JEMS), Volume 14 (2012) no. 2, pp. 373-419 | DOI | MR | Zbl
[8] Knot homology via derived categories of coherent sheaves. I. The -case, Duke Math. J., Volume 142 (2008) no. 3, pp. 511-588 | DOI | MR | Zbl
[9] Double affine Hecke algebras, London Mathematical Society Lecture Note Series, 319, Cambridge University Press, Cambridge, 2005, xii+434 pages | DOI | MR | Zbl
[10] Diagrammatic Kazhdan-Lusztig theory for the (walled) Brauer algebra, J. Algebra, Volume 340 (2011), pp. 151-181 | DOI | MR | Zbl
[11] On the blocks of the walled Brauer algebra, J. Algebra, Volume 320 (2008) no. 1, pp. 169-212 | DOI | MR | Zbl
[12] 2-row Springer fibres and Khovanov diagram algebras for type D, Canad. J. Math., Volume 68 (2016) no. 6, pp. 1285-1333 | DOI | MR | Zbl
[13] Diagrammatic description for the categories of perverse sheaves on isotropic Grassmannians, Selecta Math. (N.S.), Volume 22 (2016) no. 3, pp. 1455-1536 | DOI | MR | Zbl
[14] Koszul gradings on Brauer algebras, Int. Math. Res. Not. IMRN (2016) no. 13, pp. 3970-4011 | DOI | MR | Zbl
[15] On the category of finite-dimensional representations of : Part I, Representation theory—current trends and perspectives (EMS Ser. Congr. Rep.), Eur. Math. Soc., Zürich, 2017, pp. 109-170 | DOI | MR | Zbl
[16] Deligne categories and representations of , preprint, 2021 http://www.math.uni-bonn.de/ag/stroppel/ospii.pdf
[17] On the singularity of the irreducible components of a Springer fiber in , Selecta Math. (N.S.), Volume 16 (2010) no. 3, pp. 393-418 | DOI | MR | Zbl
[18] On the topology of components of some Springer fibers and their relation to Kazhdan-Lusztig theory, Adv. Math., Volume 178 (2003) no. 2, pp. 244-276 | DOI | MR | Zbl
[19] Cocharge and skewing formulas for -Springer modules and the Delta conjecture, Int. Math. Res. Not. IMRN (2024) no. 14, pp. 10895-10917 | DOI | MR | Zbl
[20] Springer fibers and the Delta conjecture at , Adv. Math., Volume 439 (2024), Paper no. 109491, 53 pages | DOI | MR | Zbl
[21] Ordered set partitions, generalized coinvariant algebras, and the Delta conjecture, Adv. Math., Volume 329 (2018), pp. 851-915 | DOI | MR | Zbl
[22] Irreducible components of two-row Springer fibers for all classical types, Proc. Amer. Math. Soc., Volume 150 (2022) no. 6, pp. 2415-2432 | DOI | MR | Zbl
[23] Specht series for skew representations of symmetric groups, J. Algebra, Volume 56 (1979) no. 2, pp. 343-364 | DOI | MR | Zbl
[24] An exotic Springer correspondence for symplectic groups, 2006 | arXiv | Zbl
[25] A functor-valued invariant of tangles, Algebr. Geom. Topol., Volume 2 (2002), pp. 665-741 | DOI | MR | Zbl
[26] Crossingless matchings and the cohomology of Springer varieties, Commun. Contemp. Math., Volume 6 (2004) no. 4, pp. 561-577 | DOI | MR | Zbl
[27] Tensor product categorifications, Verma modules and the blob 2-category, Quantum Topol., Volume 12 (2021) no. 4, pp. 705-812 | DOI | MR | Zbl
[28] The blob algebra and the periodic Temperley-Lieb algebra, Lett. Math. Phys., Volume 30 (1994) no. 3, pp. 189-206 | DOI | MR | Zbl
[29] Irreducible components of exotic Springer fibres, J. Lond. Math. Soc. (2), Volume 98 (2018) no. 3, pp. 609-637 | DOI | MR | Zbl
[30] Skew shape representations are irreducible, Combinatorial and geometric representation theory (Seoul, 2001) (Contemp. Math.), Volume 325, Amer. Math. Soc., Providence, RI, 2003, pp. 161-189 | DOI | MR | Zbl
[31] A topological construction for all two-row Springer varieties, Pacific J. Math., Volume 253 (2011) no. 1, pp. 221-255 | DOI | MR | Zbl
[32] Springer representations on the Khovanov Springer varieties, Math. Proc. Cambridge Philos. Soc., Volume 151 (2011) no. 1, pp. 59-81 | DOI | MR | Zbl
[33] Exotic Springer fibers for orbits corresponding to one-row bipartitions, Transform. Groups, Volume 27 (2022) no. 3, pp. 1111-1147 | DOI | MR | Zbl
[34] A graphical calculus for 2-block Spaltenstein varieties, Glasg. Math. J., Volume 54 (2012) no. 2, pp. 449-477 | DOI | MR | Zbl
[35] Trigonometric sums, Green functions of finite groups and representations of Weyl groups, Invent. Math., Volume 36 (1976), pp. 173-207 | DOI | MR | Zbl
[36] A construction of representations of Weyl groups, Invent. Math., Volume 44 (1978) no. 3, pp. 279-293 | DOI | MR | Zbl
[37] Enumerative combinatorics. Volume 1, Cambridge Studies in Advanced Mathematics, 49, Cambridge University Press, Cambridge, 2012, xiv+626 pages | MR | Zbl
[38] Parabolic category , perverse sheaves on Grassmannians, Springer fibres and Khovanov homology, Compos. Math., Volume 145 (2009) no. 4, pp. 954-992 | DOI | MR | Zbl
[39] 2-block Springer fibers: convolution algebras and coherent sheaves, Comment. Math. Helv., Volume 87 (2012) no. 2, pp. 477-520 | DOI | MR | Zbl
[40] Two-block Springer fibers of types C and D: a diagrammatic approach to Springer theory, Math. Z., Volume 292 (2019) no. 3-4, pp. 1387-1430 | DOI | MR | Zbl
[41] Representations of degenerate affine Hecke algebra and , Combinatorial methods in representation theory (Kyoto, 1998) (Adv. Stud. Pure Math.), Volume 28, Kinokuniya, Tokyo, 2000, pp. 343-372 | DOI | MR | Zbl
[42] A remark on the topology of Springer varieties., 2009 | arXiv | Zbl
[43] Topology of two-row Springer fibers for the even orthogonal and symplectic group, Trans. Amer. Math. Soc., Volume 370 (2018) no. 4, pp. 2707-2737 | DOI | MR | Zbl
Cited by Sources: