Two-row Delta Springer varieties
Algebraic Combinatorics, Volume 8 (2025) no. 4, pp. 925-953.

We study the geometry and topology of $\Delta $-Springer varieties associated with two-row partitions. These varieties were introduced in recent work by Griffin–Levinson–Woo to give a geometric realization of a symmetric function appearing in the Delta conjecture by Haglund–Remmel–Wilson. We provide an explicit and combinatorial description of the irreducible components of the two-row $\Delta $-Springer variety and compare it to the ordinary two-row Springer fiber as well as Kato’s exotic Springer fiber corresponding to a one-row bipartition. In addition to that, we extend the action of the symmetric group on the homology of the two-row $\Delta $-Springer variety to an action of a degenerate affine Hecke algebra and relate this action to a $\mathfrak{gl}_{2}$-tensor space.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/alco.435
Classification: 14M15, 05E10, 20C08
Keywords: Springer theory, flag varieties, action on homology, degenerate affine Hecke algebra

Lacabanne, Abel 1; Vaz, Pedro 2; Wilbert, Arik 3

1 Laboratoire de Mathématiques Blaise Pascal (UMR 6620) Université Clermont Auvergne Campus Universitaire des Cézeaux 3 place Vasarely 63178 Aubière Cedex France
2 Institut de Recherche en Mathématique et Physique Université Catholique de Louvain Chemin du Cyclotron 2 1348 Louvain-la-Neuve Belgium
3 Department of Mathematics & Statistics University of South Alabama Mobile AL 36688 USA
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{ALCO_2025__8_4_925_0,
     author = {Lacabanne, Abel and Vaz, Pedro and Wilbert, Arik},
     title = {Two-row {Delta} {Springer} varieties},
     journal = {Algebraic Combinatorics},
     pages = {925--953},
     publisher = {The Combinatorics Consortium},
     volume = {8},
     number = {4},
     year = {2025},
     doi = {10.5802/alco.435},
     language = {en},
     url = {https://alco.centre-mersenne.org/articles/10.5802/alco.435/}
}
TY  - JOUR
AU  - Lacabanne, Abel
AU  - Vaz, Pedro
AU  - Wilbert, Arik
TI  - Two-row Delta Springer varieties
JO  - Algebraic Combinatorics
PY  - 2025
SP  - 925
EP  - 953
VL  - 8
IS  - 4
PB  - The Combinatorics Consortium
UR  - https://alco.centre-mersenne.org/articles/10.5802/alco.435/
DO  - 10.5802/alco.435
LA  - en
ID  - ALCO_2025__8_4_925_0
ER  - 
%0 Journal Article
%A Lacabanne, Abel
%A Vaz, Pedro
%A Wilbert, Arik
%T Two-row Delta Springer varieties
%J Algebraic Combinatorics
%D 2025
%P 925-953
%V 8
%N 4
%I The Combinatorics Consortium
%U https://alco.centre-mersenne.org/articles/10.5802/alco.435/
%R 10.5802/alco.435
%G en
%F ALCO_2025__8_4_925_0
Lacabanne, Abel; Vaz, Pedro; Wilbert, Arik. Two-row Delta Springer varieties. Algebraic Combinatorics, Volume 8 (2025) no. 4, pp. 925-953. doi : 10.5802/alco.435. https://alco.centre-mersenne.org/articles/10.5802/alco.435/

[1] Achar, Pramod N.; Henderson, Anthony Orbit closures in the enhanced nilpotent cone, Adv. Math., Volume 219 (2008) no. 1, pp. 27-62 | DOI | MR | Zbl

[2] Borho, Walter; MacPherson, Robert Partial resolutions of nilpotent varieties, Analysis and topology on singular spaces, II, III (Luminy, 1981) (Astérisque), Volume 101-102, Soc. Math. France, Paris, 1983, pp. 23-74 | Numdam | MR | Zbl

[3] Brundan, Jonathan Symmetric functions, parabolic category 𝒪, and the Springer fiber, Duke Math. J., Volume 143 (2008) no. 1, pp. 41-79 | DOI | MR | Zbl

[4] Brundan, Jonathan; Stroppel, Catharina Highest weight categories arising from Khovanov’s diagram algebra. II. Koszulity, Transform. Groups, Volume 15 (2010) no. 1, pp. 1-45 | DOI | MR | Zbl

[5] Brundan, Jonathan; Stroppel, Catharina Highest weight categories arising from Khovanov’s diagram algebra I: cellularity, Mosc. Math. J., Volume 11 (2011) no. 4, p. 685-722, 821–822 | DOI | MR | Zbl

[6] Brundan, Jonathan; Stroppel, Catharina Highest weight categories arising from Khovanov’s diagram algebra III: category 𝒪, Represent. Theory, Volume 15 (2011), pp. 170-243 | DOI | MR | Zbl

[7] Brundan, Jonathan; Stroppel, Catharina Highest weight categories arising from Khovanov’s diagram algebra IV: the general linear supergroup, J. Eur. Math. Soc. (JEMS), Volume 14 (2012) no. 2, pp. 373-419 | DOI | MR | Zbl

[8] Cautis, Sabin; Kamnitzer, Joel Knot homology via derived categories of coherent sheaves. I. The 𝔰𝔩(2)-case, Duke Math. J., Volume 142 (2008) no. 3, pp. 511-588 | DOI | MR | Zbl

[9] Cherednik, Ivan Double affine Hecke algebras, London Mathematical Society Lecture Note Series, 319, Cambridge University Press, Cambridge, 2005, xii+434 pages | DOI | MR | Zbl

[10] Cox, Anton; De Visscher, Maud Diagrammatic Kazhdan-Lusztig theory for the (walled) Brauer algebra, J. Algebra, Volume 340 (2011), pp. 151-181 | DOI | MR | Zbl

[11] Cox, Anton; De Visscher, Maud; Doty, Stephen; Martin, Paul On the blocks of the walled Brauer algebra, J. Algebra, Volume 320 (2008) no. 1, pp. 169-212 | DOI | MR | Zbl

[12] Ehrig, Michael; Stroppel, Catharina 2-row Springer fibres and Khovanov diagram algebras for type D, Canad. J. Math., Volume 68 (2016) no. 6, pp. 1285-1333 | DOI | MR | Zbl

[13] Ehrig, Michael; Stroppel, Catharina Diagrammatic description for the categories of perverse sheaves on isotropic Grassmannians, Selecta Math. (N.S.), Volume 22 (2016) no. 3, pp. 1455-1536 | DOI | MR | Zbl

[14] Ehrig, Michael; Stroppel, Catharina Koszul gradings on Brauer algebras, Int. Math. Res. Not. IMRN (2016) no. 13, pp. 3970-4011 | DOI | MR | Zbl

[15] Ehrig, Michael; Stroppel, Catharina On the category of finite-dimensional representations of OSp (r|2n): Part I, Representation theory—current trends and perspectives (EMS Ser. Congr. Rep.), Eur. Math. Soc., Zürich, 2017, pp. 109-170 | DOI | MR | Zbl

[16] Ehrig, Michael; Stroppel, Catharina Deligne categories and representations of OSp (r|2n), preprint, 2021 http://www.math.uni-bonn.de/ag/stroppel/ospii.pdf

[17] Fresse, Lucas; Melnikov, Anna On the singularity of the irreducible components of a Springer fiber in 𝔰𝔩 n , Selecta Math. (N.S.), Volume 16 (2010) no. 3, pp. 393-418 | DOI | MR | Zbl

[18] Fung, Francis Y. C. On the topology of components of some Springer fibers and their relation to Kazhdan-Lusztig theory, Adv. Math., Volume 178 (2003) no. 2, pp. 244-276 | DOI | MR | Zbl

[19] Gillespie, Maria; Griffin, Sean T. Cocharge and skewing formulas for Δ-Springer modules and the Delta conjecture, Int. Math. Res. Not. IMRN (2024) no. 14, pp. 10895-10917 | DOI | MR | Zbl

[20] Griffin, Sean T.; Levinson, Jake; Woo, Alexander Springer fibers and the Delta conjecture at t=0, Adv. Math., Volume 439 (2024), Paper no. 109491, 53 pages | DOI | MR | Zbl

[21] Haglund, James; Rhoades, Brendon; Shimozono, Mark Ordered set partitions, generalized coinvariant algebras, and the Delta conjecture, Adv. Math., Volume 329 (2018), pp. 851-915 | DOI | MR | Zbl

[22] Im, Mee Seong; Lai, Chun-Ju; Wilbert, Arik Irreducible components of two-row Springer fibers for all classical types, Proc. Amer. Math. Soc., Volume 150 (2022) no. 6, pp. 2415-2432 | DOI | MR | Zbl

[23] James, Gordon D.; Peel, Michael H. Specht series for skew representations of symmetric groups, J. Algebra, Volume 56 (1979) no. 2, pp. 343-364 | DOI | MR | Zbl

[24] Kato, Syu An exotic Springer correspondence for symplectic groups, 2006 | arXiv | Zbl

[25] Khovanov, Mikhail A functor-valued invariant of tangles, Algebr. Geom. Topol., Volume 2 (2002), pp. 665-741 | DOI | MR | Zbl

[26] Khovanov, Mikhail Crossingless matchings and the cohomology of (n,n) Springer varieties, Commun. Contemp. Math., Volume 6 (2004) no. 4, pp. 561-577 | DOI | MR | Zbl

[27] Lacabanne, Abel; Naisse, Grégoire; Vaz, Pedro Tensor product categorifications, Verma modules and the blob 2-category, Quantum Topol., Volume 12 (2021) no. 4, pp. 705-812 | DOI | MR | Zbl

[28] Martin, Paul; Saleur, Hubert The blob algebra and the periodic Temperley-Lieb algebra, Lett. Math. Phys., Volume 30 (1994) no. 3, pp. 189-206 | DOI | MR | Zbl

[29] Nandakumar, Vinoth; Rosso, Daniele; Saunders, Neil Irreducible components of exotic Springer fibres, J. Lond. Math. Soc. (2), Volume 98 (2018) no. 3, pp. 609-637 | DOI | MR | Zbl

[30] Ram, Arun Skew shape representations are irreducible, Combinatorial and geometric representation theory (Seoul, 2001) (Contemp. Math.), Volume 325, Amer. Math. Soc., Providence, RI, 2003, pp. 161-189 | DOI | MR | Zbl

[31] Russell, Heather M. A topological construction for all two-row Springer varieties, Pacific J. Math., Volume 253 (2011) no. 1, pp. 221-255 | DOI | MR | Zbl

[32] Russell, Heather M.; Tymoczko, Julianna S. Springer representations on the Khovanov Springer varieties, Math. Proc. Cambridge Philos. Soc., Volume 151 (2011) no. 1, pp. 59-81 | DOI | MR | Zbl

[33] Saunders, Neil; Wilbert, Arik Exotic Springer fibers for orbits corresponding to one-row bipartitions, Transform. Groups, Volume 27 (2022) no. 3, pp. 1111-1147 | DOI | MR | Zbl

[34] Schäfer, Gisa A graphical calculus for 2-block Spaltenstein varieties, Glasg. Math. J., Volume 54 (2012) no. 2, pp. 449-477 | DOI | MR | Zbl

[35] Springer, Tonny A. Trigonometric sums, Green functions of finite groups and representations of Weyl groups, Invent. Math., Volume 36 (1976), pp. 173-207 | DOI | MR | Zbl

[36] Springer, Tonny A. A construction of representations of Weyl groups, Invent. Math., Volume 44 (1978) no. 3, pp. 279-293 | DOI | MR | Zbl

[37] Stanley, Richard P. Enumerative combinatorics. Volume 1, Cambridge Studies in Advanced Mathematics, 49, Cambridge University Press, Cambridge, 2012, xiv+626 pages | MR | Zbl

[38] Stroppel, Catharina Parabolic category 𝒪, perverse sheaves on Grassmannians, Springer fibres and Khovanov homology, Compos. Math., Volume 145 (2009) no. 4, pp. 954-992 | DOI | MR | Zbl

[39] Stroppel, Catharina; Webster, Ben 2-block Springer fibers: convolution algebras and coherent sheaves, Comment. Math. Helv., Volume 87 (2012) no. 2, pp. 477-520 | DOI | MR | Zbl

[40] Stroppel, Catharina; Wilbert, Arik Two-block Springer fibers of types C and D: a diagrammatic approach to Springer theory, Math. Z., Volume 292 (2019) no. 3-4, pp. 1387-1430 | DOI | MR | Zbl

[41] Suzuki, Takeshi Representations of degenerate affine Hecke algebra and 𝔤𝔩 n , Combinatorial methods in representation theory (Kyoto, 1998) (Adv. Stud. Pure Math.), Volume 28, Kinokuniya, Tokyo, 2000, pp. 343-372 | DOI | MR | Zbl

[42] Wehrli, Stephan M. A remark on the topology of (n,n) Springer varieties., 2009 | arXiv | Zbl

[43] Wilbert, Arik Topology of two-row Springer fibers for the even orthogonal and symplectic group, Trans. Amer. Math. Soc., Volume 370 (2018) no. 4, pp. 2707-2737 | DOI | MR | Zbl

Cited by Sources: