We describe two crystal structures on set-valued decomposition tableaux. These provide the first examples of interesting “$K$-theoretic” crystals on shifted tableaux. Our first crystal is modeled on a similar construction of Monical, Pechenik, and Scrimshaw for semistandard (unshifted) set-valued tableaux. Our second crystal is adapted from the “square root” operators introduced by Yu on the same set. Neither of our shifted crystals is normal, but we conjecture that our second construction is connected with a unique highest weight element. These results lead to partial progress on a conjectural formula of Cho–Ikeda for $K$-theoretic Schur $P$-functions. We also study a new category of “square root crystals” that includes our second construction and Yu’s set-valued tableau crystals as examples. We observe that Buch’s formula for the coefficients expanding products of symmetric Grothendieck functions has a simple description in terms of the tensor product for this category.
Revised:
Accepted:
Published online:
Keywords: Crystals, $K$-theoretic Schur $P$-functions, queer Lie superalgebras, decomposition tableaux, set-valued tableaux
Marberg, Eric 1; Tong, Kam Hung 1

@article{ALCO_2025__8_4_857_0, author = {Marberg, Eric and Tong, Kam Hung}, title = {Crystals for set-valued decomposition tableaux}, journal = {Algebraic Combinatorics}, pages = {857--896}, publisher = {The Combinatorics Consortium}, volume = {8}, number = {4}, year = {2025}, doi = {10.5802/alco.437}, language = {en}, url = {https://alco.centre-mersenne.org/articles/10.5802/alco.437/} }
TY - JOUR AU - Marberg, Eric AU - Tong, Kam Hung TI - Crystals for set-valued decomposition tableaux JO - Algebraic Combinatorics PY - 2025 SP - 857 EP - 896 VL - 8 IS - 4 PB - The Combinatorics Consortium UR - https://alco.centre-mersenne.org/articles/10.5802/alco.437/ DO - 10.5802/alco.437 LA - en ID - ALCO_2025__8_4_857_0 ER -
%0 Journal Article %A Marberg, Eric %A Tong, Kam Hung %T Crystals for set-valued decomposition tableaux %J Algebraic Combinatorics %D 2025 %P 857-896 %V 8 %N 4 %I The Combinatorics Consortium %U https://alco.centre-mersenne.org/articles/10.5802/alco.437/ %R 10.5802/alco.437 %G en %F ALCO_2025__8_4_857_0
Marberg, Eric; Tong, Kam Hung. Crystals for set-valued decomposition tableaux. Algebraic Combinatorics, Volume 8 (2025) no. 4, pp. 857-896. doi : 10.5802/alco.437. https://alco.centre-mersenne.org/articles/10.5802/alco.437/
[1] A Littlewood-Richardson rule for the -theory of Grassmannians, Acta Math., Volume 189 (2002) no. 1, pp. 37-78 | DOI | MR | Zbl
[2] Pieri rules for the -theory of cominuscule Grassmannians, J. Reine Angew. Math., Volume 668 (2012), pp. 109-132 | DOI | MR | Zbl
[3] Crystal bases: Representations and combinatorics, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2017, xii+279 pages | DOI | MR | Zbl
[4] A new Littlewood-Richardson rule for Schur -functions, Trans. Amer. Math. Soc., Volume 365 (2013) no. 2, pp. 939-972 | DOI | MR | Zbl
[5] Bijections among combinatorial models for shifted Littlewood-Richardson coefficients, J. Combin. Theory Ser. A, Volume 128 (2014), pp. 56-83 | DOI | MR | Zbl
[6] -theoretic Schubert calculus for and jeu de taquin for shifted increasing tableaux, J. Reine Angew. Math., Volume 690 (2014), pp. 51-63 | DOI | MR | Zbl
[7] Characterization of queer supercrystals, J. Combin. Theory Ser. A, Volume 173 (2020), Paper no. 105235, 53 pages | DOI | MR | Zbl
[8] Crystal bases for the quantum queer superalgebra and semistandard decomposition tableaux, Trans. Amer. Math. Soc., Volume 366 (2014) no. 1, pp. 457-489 | DOI | MR | Zbl
[9] Crystal bases for the quantum queer superalgebra, J. Eur. Math. Soc. (JEMS), Volume 17 (2015) no. 7, pp. 1593-1627 | DOI | MR | Zbl
[10] Highest weight modules over quantum queer superalgebra , Comm. Math. Phys., Volume 296 (2010) no. 3, pp. 827-860 | DOI | MR | Zbl
[11] On mixed insertion, symmetry, and shifted Young tableaux, J. Combin. Theory Ser. A, Volume 50 (1989) no. 2, pp. 196-225 | DOI | MR | Zbl
[12] Shifted Hecke insertion and the -theory of , J. Combin. Theory Ser. A, Volume 151 (2017), pp. 207-240 | DOI | MR | Zbl
[13] Crystal structures for canonical Grothendieck functions, Algebr. Comb., Volume 3 (2020) no. 3, pp. 727-755 | DOI | Numdam | MR | Zbl
[14] Personal communication
[15] -theoretic analogues of factorial Schur - and -functions, Adv. Math., Volume 243 (2013), pp. 22-66 | DOI | MR | Zbl
[16] Neutral-fermionic presentation of the -theoretic -function, J. Algebraic Combin., Volume 55 (2022) no. 2, pp. 629-662 | DOI | MR | Zbl
[17] On the combinatorics of crystal graphs. I. Lusztig’s involution, Adv. Math., Volume 211 (2007) no. 1, pp. 204-243 | DOI | MR | Zbl
[18] Combinatorial formulas for shifted dual stable Grothendieck polynomials, Sém. Lothar. Combin., Volume 89B (2023), Paper no. 22, 12 pages | MR
[19] Symmetric functions and Hall polynomials, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1995, x+475 pages | DOI | MR | Zbl
[20] Bumping operators and insertion algorithms for queer supercrystals, Selecta Math. (N.S.), Volume 28 (2022) no. 2, Paper no. 36, 62 pages | DOI | MR | Zbl
[21] Shifted combinatorial Hopf algebras from -theory, Algebr. Comb., Volume 7 (2024) no. 4, pp. 1123-1156 | DOI | MR | Zbl
[22] -theory formulas for orthogonal and symplectic orbit closures, Adv. Math., Volume 372 (2020), Paper no. 107299, 43 pages | DOI | MR | Zbl
[23] On some properties of symplectic Grothendieck polynomials, J. Pure Appl. Algebra, Volume 225 (2021) no. 1, Paper no. 106463, 22 pages | DOI | MR | Zbl
[24] Key and Lascoux polynomials for symmetric orbit closures, 2023 | arXiv | Zbl
[25] Highest weight crystals for Schur -functions, Comb. Theory, Volume 3 (2023) no. 2, Paper no. 6, 59 pages | DOI | MR | Zbl
[26] Crystal structures for symmetric Grothendieck polynomials, Transform. Groups, Volume 26 (2021) no. 3, pp. 1025-1075 | DOI | MR | Zbl
[27] Universal factorial Schur -functions and their duals, 2018 | arXiv | Zbl
[28] Uncrowding algorithm for hook-valued tableaux, Ann. Comb., Volume 26 (2022) no. 1, pp. 261-301 | DOI | MR | Zbl
[29] K-theoretic crystals for set-valued tableaux of rectangular shapes, Algebr. Comb., Volume 5 (2022) no. 3, pp. 515-536 | DOI | Numdam | MR | Zbl
[30] Genomic tableaux, J. Algebraic Combin., Volume 45 (2017) no. 3, pp. 649-685 | DOI | MR | Zbl
[31] The shifted plactic monoid, Math. Z., Volume 266 (2010) no. 2, pp. 363-392 | DOI | MR | Zbl
[32] A local characterization of simply-laced crystals, Trans. Amer. Math. Soc., Volume 355 (2003) no. 12, pp. 4807-4823 | DOI | MR | Zbl
[33] Set-valued tableaux rule for Lascoux polynomials, Comb. Theory, Volume 3 (2023) no. 1, Paper no. 13, 31 pages | MR | Zbl
Cited by Sources: