Heckman–Polychronakos operators form a prominent family of commuting differential-difference operators defined in terms of the Dunkl operators $\mathcal{D}_i$ as $\mathcal{P}_m= \sum _{i=1}^N (x_i \mathcal{D}_i)^m$. They have been known since 1990s in connection with trigonometric Calogero–Moser–Sutherland Hamiltonian and Jack symmetric polynomials. We explicitly compute the eigenvalues of these operators for symmetric and skew-symmetric eigenfunctions, as well as partial sums of eigenvalues for general polynomial eigenfunctions.
Revised:
Accepted:
Published online:
Keywords: Jack polynomial, operators on polynomials, characters of representations, symmetric group
Dunkl, Charles 1; Gorin, Vadim 2
CC-BY 4.0
@article{ALCO_2025__8_6_1547_0,
author = {Dunkl, Charles and Gorin, Vadim},
title = {Eigenvalues of {Heckman{\textendash}Polychronakos} operators},
journal = {Algebraic Combinatorics},
pages = {1547--1566},
year = {2025},
publisher = {The Combinatorics Consortium},
volume = {8},
number = {6},
doi = {10.5802/alco.451},
language = {en},
url = {https://alco.centre-mersenne.org/articles/10.5802/alco.451/}
}
TY - JOUR AU - Dunkl, Charles AU - Gorin, Vadim TI - Eigenvalues of Heckman–Polychronakos operators JO - Algebraic Combinatorics PY - 2025 SP - 1547 EP - 1566 VL - 8 IS - 6 PB - The Combinatorics Consortium UR - https://alco.centre-mersenne.org/articles/10.5802/alco.451/ DO - 10.5802/alco.451 LA - en ID - ALCO_2025__8_6_1547_0 ER -
%0 Journal Article %A Dunkl, Charles %A Gorin, Vadim %T Eigenvalues of Heckman–Polychronakos operators %J Algebraic Combinatorics %D 2025 %P 1547-1566 %V 8 %N 6 %I The Combinatorics Consortium %U https://alco.centre-mersenne.org/articles/10.5802/alco.451/ %R 10.5802/alco.451 %G en %F ALCO_2025__8_6_1547_0
Dunkl, Charles; Gorin, Vadim. Eigenvalues of Heckman–Polychronakos operators. Algebraic Combinatorics, Volume 8 (2025) no. 6, pp. 1547-1566. doi: 10.5802/alco.451
[1] The Calogero-Sutherland model and polynomials with prescribed symmetry, Nuclear Phys. B, Volume 492 (1997) no. 3, pp. 682-716 | DOI | MR | Zbl
[2] Matrix addition and the Dunkl transform at high temperature, Comm. Math. Phys., Volume 394 (2022) no. 2, pp. 735-795 | DOI | MR | Zbl
[3] Gaussian asymptotics of discrete -ensembles, Publ. Math. Inst. Hautes Études Sci., Volume 125 (2017), pp. 1-78 | DOI | MR | Zbl
[4] -measures on partitions and their scaling limits, European J. Combin., Volume 26 (2005) no. 6, pp. 795-834 | DOI | MR | Zbl
[5] Harmonic analysis on finite groups: Representation theory, Gelfand pairs and Markov chains, Cambridge Studies in Advanced Mathematics, 108, Cambridge University Press, Cambridge, 2008, xiv+440 pages | DOI | MR | Zbl
[6] Dunkl and Cherednik operators, Encyclopedia of mathematical physics. Vol. 3. Integrable systems & algebra, Academic Press, Amsterdam, 2025, pp. 309-327 | MR | DOI
[7] A unification of Knizhnik-Zamolodchikov and Dunkl operators via affine Hecke algebras, Invent. Math., Volume 106 (1991) no. 2, pp. 411-431 | DOI | MR | Zbl
[8] Integration of quantum many-body problems by affine Knizhnik-Zamolodchikov equations, Adv. Math., Volume 106 (1994) no. 1, pp. 65-95 | DOI | MR | Zbl
[9] Universality of global asymptotics of Jack-deformed random Young diagrams at varying temperatures, 2023 | arXiv | Zbl
[10] Asymptotics of discrete -corners processes via two-level discrete loop equations, Probab. Math. Phys., Volume 3 (2022) no. 2, pp. 247-342 | DOI | MR | Zbl
[11] Global asymptotics for -Krawtchouk corners processes via multi-level loop equations, 2024 | arXiv | Zbl
[12] Gaussian fluctuations of Young diagrams and structure constants of Jack characters, Duke Math. J., Volume 165 (2016) no. 7, pp. 1193-1282 | DOI | MR | Zbl
[13] Gaussian fluctuations of Jack-deformed random Young diagrams, Probab. Theory Related Fields, Volume 174 (2019) no. 1-2, pp. 133-176 | DOI | MR | Zbl
[14] An addition theorem for Hahn polynomials: the spherical functions, SIAM J. Math. Anal., Volume 9 (1978) no. 4, pp. 627-637 | DOI | MR | Zbl
[15] Differential-difference operators associated to reflection groups, Trans. Amer. Math. Soc., Volume 311 (1989) no. 1, pp. 167-183 | DOI | MR | Zbl
[16] Integral kernels with reflection group invariance, Canad. J. Math., Volume 43 (1991) no. 6, pp. 1213-1227 | DOI | MR | Zbl
[17] Reflection groups in analysis and applications, Jpn. J. Math., Volume 3 (2008) no. 2, pp. 215-246 | DOI | MR | Zbl
[18] Some spherical function values for hook tableaux isotypes and Young subgroups, SIGMA Symmetry Integrability Geom. Methods Appl., Volume 21 (2025), Paper no. 053, 17 pages | DOI | MR | Zbl
[19] Some spherical function values for two-row tableaux and Young subgroups with three factors, Open Journal of Mathematical Analysis, Volume 9 (2025) no. 1, pp. 131-140 | DOI
[20] On Dunkl angular momenta algebra, J. High Energy Phys. (2015) no. 11, Paper no. 107, 22 pages | DOI | MR
[21] The hook graphs of the symmetric groups, Canad. J. Math., Volume 6 (1954), pp. 316-324 | DOI | MR | Zbl
[22] Dynamical loop equation, Ann. Probab., Volume 52 (2024) no. 5, pp. 1758-1863 | DOI | MR | Zbl
[23] Multilevel Dyson Brownian motions via Jack polynomials, Probab. Theory Related Fields, Volume 163 (2015) no. 3-4, pp. 413-463 | DOI | MR | Zbl
[24] Airy line ensemble and its Laplace transform, 2024 | arXiv | Zbl
[25] Rigidity and edge universality of discrete -ensembles, Comm. Pure Appl. Math., Volume 72 (2019) no. 9, pp. 1875-1982 | DOI | MR | Zbl
[26] An elementary approach to the hypergeometric shift operators of Opdam, Invent. Math., Volume 103 (1991) no. 2, pp. 341-350 | DOI | MR | Zbl
[27] Law of large numbers and central limit theorems through Jack generating functions, Adv. Math., Volume 380 (2021), Paper no. 107545, 91 pages | DOI | MR | Zbl
[28] Kerov’s central limit theorem for the Plancherel measure on Young diagrams, Symmetric functions 2001: surveys of developments and perspectives (NATO Sci. Ser. II Math. Phys. Chem.), Volume 74, Kluwer Acad. Publ., Dordrecht (2002), pp. 93-151 | DOI | MR | Zbl
[29] The representation theory of the symmetric groups, The Arcata Conference on Representations of Finite Groups (Arcata, Calif., 1986) (Proc. Sympos. Pure Math.), Volume 47, Part 1, Amer. Math. Soc., Providence, RI, 1987, pp. 111-126 | DOI | MR | Zbl
[30] Edge universality of -additions through Dunkl operators, 2024 | arXiv | Zbl
[31] Anisotropic Young diagrams and symmetric Jack functions, Funktsional. Anal. i Prilozhen., Volume 34 (2000) no. 1, p. 51-64, 96 | DOI | MR | Zbl
[32] Exact operator solution of the Calogero-Sutherland model, Comm. Math. Phys., Volume 178 (1996) no. 2, pp. 425-452 | DOI | MR | Zbl
[33] Symmetric functions and Hall polynomials, Oxford Classic Texts in the Physical Sciences, The Clarendon Press, Oxford University Press, New York, 2015, xii+475 pages | MR | Zbl
[34] Spectral theory of the Nazarov-Sklyanin Lax operator, SIGMA Symmetry Integrability Geom. Methods Appl., Volume 19 (2023), Paper no. 063, 22 pages | DOI | MR | Zbl
[35] Gaussian asymptotics of Jack measures on partitions from weighted enumeration of ribbon paths, Int. Math. Res. Not. IMRN (2023) no. 3, pp. 1801-1881 | DOI | MR | Zbl
[36] Integrable hierarchy of the quantum Benjamin-Ono equation, SIGMA Symmetry Integrability Geom. Methods Appl., Volume 9 (2013), Paper no. 078, 14 pages | DOI | MR | Zbl
[37] Cherednik operators and Ruijsenaars-Schneider model at infinity, Int. Math. Res. Not. IMRN (2019) no. 8, pp. 2266-2294 | DOI | MR | Zbl
[38] Shifted Jack polynomials, binomial formula, and applications, Math. Res. Lett., Volume 4 (1997) no. 1, pp. 69-78 | DOI | MR | Zbl
[39] A new approach to representation theory of symmetric groups, Selecta Math. (N.S.), Volume 2 (1996) no. 4, pp. 581-605 | DOI | MR | Zbl
[40] Exchange operator formalism for integrable systems of particles, Phys. Rev. Lett., Volume 69 (1992) no. 5, pp. 703-705 | DOI | MR | Zbl
[41] Jack-Laurent symmetric functions, Proc. Lond. Math. Soc. (3), Volume 111 (2015) no. 1, pp. 63-92 | DOI | MR | Zbl
[42] Linear representations of finite groups, Graduate Texts in Mathematics, Vol. 42, Springer-Verlag, New York-Heidelberg, 1977, x+170 pages | MR | DOI | Zbl
[43] Some combinatorial properties of Jack symmetric functions, Adv. Math., Volume 77 (1989) no. 1, pp. 76-115 | DOI | MR | Zbl
[44] Orthogonal polynomials and Chevalley groups, Special functions: group theoretical aspects and applications (Math. Appl.), Reidel, Dordrecht, 1984, pp. 87-128 | MR | Zbl
[45] Rectangular matrix additions in low and high temperatures, 2023 | arXiv | Zbl
[46] Compact Lie groups and their representations, Translations of Mathematical Monographs, Vol. 40, American Mathematical Society, Providence, RI, 1973, viii+448 pages | MR | DOI | Zbl
Cited by Sources: