Eigenvalues of Heckman–Polychronakos operators
Algebraic Combinatorics, Volume 8 (2025) no. 6, pp. 1547-1566

Heckman–Polychronakos operators form a prominent family of commuting differential-difference operators defined in terms of the Dunkl operators $\mathcal{D}_i$ as $\mathcal{P}_m= \sum _{i=1}^N (x_i \mathcal{D}_i)^m$. They have been known since 1990s in connection with trigonometric Calogero–Moser–Sutherland Hamiltonian and Jack symmetric polynomials. We explicitly compute the eigenvalues of these operators for symmetric and skew-symmetric eigenfunctions, as well as partial sums of eigenvalues for general polynomial eigenfunctions.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/alco.451
Classification: 05E05, 05E10, 20C30, 15A18, 81Q05
Keywords: Jack polynomial, operators on polynomials, characters of representations, symmetric group

Dunkl, Charles 1; Gorin, Vadim 2

1 University of Virginia, Department of Mathematics, Charlottesville, VA 22904 (USA)
2 University of California at Berkeley, Departments of Statistics and Mathematics, Berkeley, CA 94720 (USA)
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{ALCO_2025__8_6_1547_0,
     author = {Dunkl, Charles and Gorin, Vadim},
     title = {Eigenvalues of {Heckman{\textendash}Polychronakos} operators},
     journal = {Algebraic Combinatorics},
     pages = {1547--1566},
     year = {2025},
     publisher = {The Combinatorics Consortium},
     volume = {8},
     number = {6},
     doi = {10.5802/alco.451},
     language = {en},
     url = {https://alco.centre-mersenne.org/articles/10.5802/alco.451/}
}
TY  - JOUR
AU  - Dunkl, Charles
AU  - Gorin, Vadim
TI  - Eigenvalues of Heckman–Polychronakos operators
JO  - Algebraic Combinatorics
PY  - 2025
SP  - 1547
EP  - 1566
VL  - 8
IS  - 6
PB  - The Combinatorics Consortium
UR  - https://alco.centre-mersenne.org/articles/10.5802/alco.451/
DO  - 10.5802/alco.451
LA  - en
ID  - ALCO_2025__8_6_1547_0
ER  - 
%0 Journal Article
%A Dunkl, Charles
%A Gorin, Vadim
%T Eigenvalues of Heckman–Polychronakos operators
%J Algebraic Combinatorics
%D 2025
%P 1547-1566
%V 8
%N 6
%I The Combinatorics Consortium
%U https://alco.centre-mersenne.org/articles/10.5802/alco.451/
%R 10.5802/alco.451
%G en
%F ALCO_2025__8_6_1547_0
Dunkl, Charles; Gorin, Vadim. Eigenvalues of Heckman–Polychronakos operators. Algebraic Combinatorics, Volume 8 (2025) no. 6, pp. 1547-1566. doi: 10.5802/alco.451

[1] Baker, T. H.; Forrester, P. J. The Calogero-Sutherland model and polynomials with prescribed symmetry, Nuclear Phys. B, Volume 492 (1997) no. 3, pp. 682-716 | DOI | MR | Zbl

[2] Benaych-Georges, Florent; Cuenca, Cesar; Gorin, Vadim Matrix addition and the Dunkl transform at high temperature, Comm. Math. Phys., Volume 394 (2022) no. 2, pp. 735-795 | DOI | MR | Zbl

[3] Borodin, Alexei; Gorin, Vadim; Guionnet, Alice Gaussian asymptotics of discrete β-ensembles, Publ. Math. Inst. Hautes Études Sci., Volume 125 (2017), pp. 1-78 | DOI | MR | Zbl

[4] Borodin, Alexei; Olshanski, Grigori Z-measures on partitions and their scaling limits, European J. Combin., Volume 26 (2005) no. 6, pp. 795-834 | DOI | MR | Zbl

[5] Ceccherini-Silberstein, Tullio; Scarabotti, Fabio; Tolli, Filippo Harmonic analysis on finite groups: Representation theory, Gelfand pairs and Markov chains, Cambridge Studies in Advanced Mathematics, 108, Cambridge University Press, Cambridge, 2008, xiv+440 pages | DOI | MR | Zbl

[6] Chalykh, Oleg Dunkl and Cherednik operators, Encyclopedia of mathematical physics. Vol. 3. Integrable systems & algebra, Academic Press, Amsterdam, 2025, pp. 309-327 | MR | DOI

[7] Cherednik, Ivan A unification of Knizhnik-Zamolodchikov and Dunkl operators via affine Hecke algebras, Invent. Math., Volume 106 (1991) no. 2, pp. 411-431 | DOI | MR | Zbl

[8] Cherednik, Ivan Integration of quantum many-body problems by affine Knizhnik-Zamolodchikov equations, Adv. Math., Volume 106 (1994) no. 1, pp. 65-95 | DOI | MR | Zbl

[9] Cuenca, Cesar; Dołęga, Maciej; Moll, Alexander Universality of global asymptotics of Jack-deformed random Young diagrams at varying temperatures, 2023 | arXiv | Zbl

[10] Dimitrov, Evgeni; Knizel, Alisa Asymptotics of discrete β-corners processes via two-level discrete loop equations, Probab. Math. Phys., Volume 3 (2022) no. 2, pp. 247-342 | DOI | MR | Zbl

[11] Dimitrov, Evgeni; Knizel, Alisa Global asymptotics for β-Krawtchouk corners processes via multi-level loop equations, 2024 | arXiv | Zbl

[12] Dołęga, Maciej; Féray, Valentin Gaussian fluctuations of Young diagrams and structure constants of Jack characters, Duke Math. J., Volume 165 (2016) no. 7, pp. 1193-1282 | DOI | MR | Zbl

[13] Dołęga, Maciej; Śniady, Piotr Gaussian fluctuations of Jack-deformed random Young diagrams, Probab. Theory Related Fields, Volume 174 (2019) no. 1-2, pp. 133-176 | DOI | MR | Zbl

[14] Dunkl, Charles F. An addition theorem for Hahn polynomials: the spherical functions, SIAM J. Math. Anal., Volume 9 (1978) no. 4, pp. 627-637 | DOI | MR | Zbl

[15] Dunkl, Charles F. Differential-difference operators associated to reflection groups, Trans. Amer. Math. Soc., Volume 311 (1989) no. 1, pp. 167-183 | DOI | MR | Zbl

[16] Dunkl, Charles F. Integral kernels with reflection group invariance, Canad. J. Math., Volume 43 (1991) no. 6, pp. 1213-1227 | DOI | MR | Zbl

[17] Dunkl, Charles F. Reflection groups in analysis and applications, Jpn. J. Math., Volume 3 (2008) no. 2, pp. 215-246 | DOI | MR | Zbl

[18] Dunkl, Charles F. Some spherical function values for hook tableaux isotypes and Young subgroups, SIGMA Symmetry Integrability Geom. Methods Appl., Volume 21 (2025), Paper no. 053, 17 pages | DOI | MR | Zbl

[19] Dunkl, Charles F. Some spherical function values for two-row tableaux and Young subgroups with three factors, Open Journal of Mathematical Analysis, Volume 9 (2025) no. 1, pp. 131-140 | DOI

[20] Feigin, Misha; Hakobyan, Tigran On Dunkl angular momenta algebra, J. High Energy Phys. (2015) no. 11, Paper no. 107, 22 pages | DOI | MR

[21] Frame, J. S.; Robinson, G. de B.; Thrall, R. M. The hook graphs of the symmetric groups, Canad. J. Math., Volume 6 (1954), pp. 316-324 | DOI | MR | Zbl

[22] Gorin, Vadim; Huang, Jiaoyang Dynamical loop equation, Ann. Probab., Volume 52 (2024) no. 5, pp. 1758-1863 | DOI | MR | Zbl

[23] Gorin, Vadim; Shkolnikov, Mykhaylo Multilevel Dyson Brownian motions via Jack polynomials, Probab. Theory Related Fields, Volume 163 (2015) no. 3-4, pp. 413-463 | DOI | MR | Zbl

[24] Gorin, Vadim; Xu, Jiaming; Zhang, Lingfu Airy β line ensemble and its Laplace transform, 2024 | arXiv | Zbl

[25] Guionnet, Alice; Huang, Jiaoyang Rigidity and edge universality of discrete β-ensembles, Comm. Pure Appl. Math., Volume 72 (2019) no. 9, pp. 1875-1982 | DOI | MR | Zbl

[26] Heckman, G. J. An elementary approach to the hypergeometric shift operators of Opdam, Invent. Math., Volume 103 (1991) no. 2, pp. 341-350 | DOI | MR | Zbl

[27] Huang, Jiaoyang Law of large numbers and central limit theorems through Jack generating functions, Adv. Math., Volume 380 (2021), Paper no. 107545, 91 pages | DOI | MR | Zbl

[28] Ivanov, Vladimir; Olshanski, Grigori Kerov’s central limit theorem for the Plancherel measure on Young diagrams, Symmetric functions 2001: surveys of developments and perspectives (NATO Sci. Ser. II Math. Phys. Chem.), Volume 74, Kluwer Acad. Publ., Dordrecht (2002), pp. 93-151 | DOI | MR | Zbl

[29] James, Gordon The representation theory of the symmetric groups, The Arcata Conference on Representations of Finite Groups (Arcata, Calif., 1986) (Proc. Sympos. Pure Math.), Volume 47, Part 1, Amer. Math. Soc., Providence, RI, 1987, pp. 111-126 | DOI | MR | Zbl

[30] Keating, David; Xu, Jiaming Edge universality of β-additions through Dunkl operators, 2024 | arXiv | Zbl

[31] Kerov, S. V. Anisotropic Young diagrams and symmetric Jack functions, Funktsional. Anal. i Prilozhen., Volume 34 (2000) no. 1, p. 51-64, 96 | DOI | MR | Zbl

[32] Lapointe, Luc; Vinet, Luc Exact operator solution of the Calogero-Sutherland model, Comm. Math. Phys., Volume 178 (1996) no. 2, pp. 425-452 | DOI | MR | Zbl

[33] Macdonald, I. G. Symmetric functions and Hall polynomials, Oxford Classic Texts in the Physical Sciences, The Clarendon Press, Oxford University Press, New York, 2015, xii+475 pages | MR | Zbl

[34] Mickler, Ryan; Moll, Alexander Spectral theory of the Nazarov-Sklyanin Lax operator, SIGMA Symmetry Integrability Geom. Methods Appl., Volume 19 (2023), Paper no. 063, 22 pages | DOI | MR | Zbl

[35] Moll, Alexander Gaussian asymptotics of Jack measures on partitions from weighted enumeration of ribbon paths, Int. Math. Res. Not. IMRN (2023) no. 3, pp. 1801-1881 | DOI | MR | Zbl

[36] Nazarov, Maxim; Sklyanin, Evgeny Integrable hierarchy of the quantum Benjamin-Ono equation, SIGMA Symmetry Integrability Geom. Methods Appl., Volume 9 (2013), Paper no. 078, 14 pages | DOI | MR | Zbl

[37] Nazarov, Maxim; Sklyanin, Evgeny Cherednik operators and Ruijsenaars-Schneider model at infinity, Int. Math. Res. Not. IMRN (2019) no. 8, pp. 2266-2294 | DOI | MR | Zbl

[38] Okounkov, A.; Olshanski, G. Shifted Jack polynomials, binomial formula, and applications, Math. Res. Lett., Volume 4 (1997) no. 1, pp. 69-78 | DOI | MR | Zbl

[39] Okounkov, Andrei; Vershik, Anatoly A new approach to representation theory of symmetric groups, Selecta Math. (N.S.), Volume 2 (1996) no. 4, pp. 581-605 | DOI | MR | Zbl

[40] Polychronakos, Alexios P. Exchange operator formalism for integrable systems of particles, Phys. Rev. Lett., Volume 69 (1992) no. 5, pp. 703-705 | DOI | MR | Zbl

[41] Sergeev, A. N.; Veselov, A. P. Jack-Laurent symmetric functions, Proc. Lond. Math. Soc. (3), Volume 111 (2015) no. 1, pp. 63-92 | DOI | MR | Zbl

[42] Serre, Jean-Pierre Linear representations of finite groups, Graduate Texts in Mathematics, Vol. 42, Springer-Verlag, New York-Heidelberg, 1977, x+170 pages | MR | DOI | Zbl

[43] Stanley, Richard P. Some combinatorial properties of Jack symmetric functions, Adv. Math., Volume 77 (1989) no. 1, pp. 76-115 | DOI | MR | Zbl

[44] Stanton, Dennis Orthogonal polynomials and Chevalley groups, Special functions: group theoretical aspects and applications (Math. Appl.), Reidel, Dordrecht, 1984, pp. 87-128 | MR | Zbl

[45] Xu, Jiaming Rectangular matrix additions in low and high temperatures, 2023 | arXiv | Zbl

[46] Želobenko, D. P. Compact Lie groups and their representations, Translations of Mathematical Monographs, Vol. 40, American Mathematical Society, Providence, RI, 1973, viii+448 pages | MR | DOI | Zbl

Cited by Sources: