We prove that, under mild assumptions, the tropical Abel–Prym map $\Psi \colon \widetilde{\Gamma }\rightarrow \operatorname{Prym}(\widetilde{\Gamma }/\Gamma )$ associated with a free double cover $\pi \colon \widetilde{\Gamma }\rightarrow \Gamma $ is harmonic of degree $2$ if and only if the source graph $\widetilde{\Gamma }$ is hyperelliptic. This is in accordance with the already established algebraic result. In this case, the Abel–Prym graph $\Psi (\widetilde{\Gamma })$ is hyperelliptic of genus $g_{\Gamma }-1$ and its Jacobian is isomorphic, as a pptav, to the Prym variety of the cover. We further show that the Abel–Prym graph coincides with a connected component of the tropical bigonal construction. En route, we count the number of distinct free double covers by hyperelliptic metric graphs.
Revised:
Accepted:
Published online:
Keywords: Algebraic geometry, tropical geometry, curves, divisors, abelian varieties, Pryms
Capobianco, Giusi 1; Len, Yoav 2
CC-BY 4.0
@article{ALCO_2025__8_6_1493_0,
author = {Capobianco, Giusi and Len, Yoav},
title = {The tropical {Abel{\textendash}Prym} map},
journal = {Algebraic Combinatorics},
pages = {1493--1527},
year = {2025},
publisher = {The Combinatorics Consortium},
volume = {8},
number = {6},
doi = {10.5802/alco.452},
language = {en},
url = {https://alco.centre-mersenne.org/articles/10.5802/alco.452/}
}
TY - JOUR AU - Capobianco, Giusi AU - Len, Yoav TI - The tropical Abel–Prym map JO - Algebraic Combinatorics PY - 2025 SP - 1493 EP - 1527 VL - 8 IS - 6 PB - The Combinatorics Consortium UR - https://alco.centre-mersenne.org/articles/10.5802/alco.452/ DO - 10.5802/alco.452 LA - en ID - ALCO_2025__8_6_1493_0 ER -
Capobianco, Giusi; Len, Yoav. The tropical Abel–Prym map. Algebraic Combinatorics, Volume 8 (2025) no. 6, pp. 1493-1527. doi: 10.5802/alco.452
[1] Abel maps for nodal curves via tropical geometry, Math. Comp., Volume 91 (2022) no. 336, pp. 1971-2025 | DOI | MR | Zbl
[2] Lifting harmonic morphisms I: metrized complexes and Berkovich skeleta, Res. Math. Sci., Volume 2 (2015), Paper no. 7, 67 pages | DOI | MR | Zbl
[3] Geometry of algebraic curves. Vol. I, Grundlehren der Mathematischen Wissenschaften, 267, Springer-Verlag, New York, 1985 | DOI | Zbl
[4] Specialization of linear systems from curves to graphs, Algebra Number Theory, Volume 2 (2008) no. 6, pp. 613-653 | DOI | MR | Zbl
[5] Metric properties of the tropical Abel-Jacobi map, J. Algebraic Combin., Volume 33 (2011) no. 3, pp. 349-381 | DOI | MR | Zbl
[6] Harmonic morphisms and hyperelliptic graphs, Int. Math. Res. Not. IMRN, Volume 2009 (2009) no. 15, pp. 2914-2955 | DOI | MR | Zbl
[7] Complex abelian varieties, Grundlehren der mathematischen Wissenschaften, 302, Springer-Verlag, Berlin, 2004, xii+635 pages | DOI | MR | Zbl
[8] Tropical curves in abelian surfaces I: enumeration of curves passing through points, Math. Proc. Cambridge Philos. Soc., Volume 177 (2024) no. 1, pp. 109-148 | DOI | MR | Zbl
[9] Tropical hyperelliptic curves, J. Algebraic Combin., Volume 37 (2013) no. 2, pp. 331-359 | DOI | MR | Zbl
[10] Clifford’s theorem for graphs, Adv. Geom., Volume 16 (2016) no. 3, pp. 389-400 | DOI | MR | Zbl
[11] Tropical curves of hyperelliptic type, J. Algebraic Combin., Volume 53 (2021) no. 4, pp. 1215-1229 | DOI | MR | Zbl
[12] On tropical Clifford’s theorem, Ric. Mat., Volume 59 (2010) no. 2, pp. 343-349 | DOI | MR | Zbl
[13] Unramified double coverings of hyperelliptic surfaces, J. Analyse Math., Volume 30 (1976), pp. 150-155 | DOI | MR | Zbl
[14] Tropicalization of theta characteristics, double covers, and Prym varieties, Selecta Math. (N.S.), Volume 24 (2018) no. 2, pp. 1391-1410 | DOI | MR | Zbl
[15] Hyperelliptic graphs and metrized complexes, Forum Math. Sigma, Volume 5 (2017), Paper no. e20, 15 pages | DOI | MR | Zbl
[16] Chip-firing games, Jacobians, and Prym varieties, 2022 | arXiv | Zbl
[17] Skeletons of Prym varieties and Brill–Noether theory, Algebra Number Theory, Volume 15 (2021) no. 3, pp. 785-820 | DOI | Zbl | MR
[18] Abelian tropical covers, Math. Proc. Cambridge Philos. Soc., Volume 176 (2024) no. 2, pp. 395-416 | DOI | MR | Zbl
[19] Kirchhoff’s theorem for Prym varieties, Forum Math. Sigma, Volume 10 (2022), Paper no. e11, 54 pages | DOI | MR | Zbl
[20] Theta characteristics of hyperelliptic graphs, Arch. Math. (Basel), Volume 106 (2016) no. 5, pp. 445-455 | DOI | MR | Zbl
[21] Tropical Donagi theorem, 2025 | arXiv | Zbl
[22] A matroidal perspective on the tropical Prym variety, The versatility of integrability—in memory of Igor Krichever (Contemp. Math.), Volume 823, Amer. Math. Soc., Providence, RI, 2025, pp. 47-81 | DOI | MR | Zbl
[23] The tropical -gonal construction, Algebr. Comb., Volume 8 (2025) no. 2, pp. 319-378 | DOI | MR | Zbl
[24] Double covers of graphs, Bull. Austral. Math. Soc., Volume 14 (1976) no. 2, pp. 233-248 | DOI | MR | Zbl
[25] The trigonal construction and the second moment of the tropical Prym variety, 2025 | arXiv | Zbl
Cited by Sources: