Kazhdan and Lusztig have shown how to partition a Coxeter group into cells. In this paper, we use the theory of Vogan classes to obtain a first characterisation of the left cells of type with respect to a certain choice of weight function.
Revised:
Accepted:
Published online:
DOI: 10.5802/alco.74
Howse, Edmund 1
@article{ALCO_2019__2_6_1033_0, author = {Howse, Edmund}, title = {Vogan classes in type $B_n$}, journal = {Algebraic Combinatorics}, pages = {1033--1057}, publisher = {MathOA foundation}, volume = {2}, number = {6}, year = {2019}, doi = {10.5802/alco.74}, zbl = {1428.05324}, mrnumber = {4049837}, language = {en}, url = {https://alco.centre-mersenne.org/articles/10.5802/alco.74/} }
Howse, Edmund. Vogan classes in type $B_n$. Algebraic Combinatorics, Volume 2 (2019) no. 6, pp. 1033-1057. doi : 10.5802/alco.74. https://alco.centre-mersenne.org/articles/10.5802/alco.74/
[1] Robinson–Schensted correspondence and left cells, Combinatorial methods in representation theory (Kyoto, 1998) (Adv. Stud. Pure Math.), Volume 28, Kinokuniya, Tokyo, 2000, pp. 1-20 | MR | Zbl
[2] Two-sided cells in type (asymptotic case), J. Algebra, Volume 304 (2006) no. 1, pp. 216-236 | DOI | MR | Zbl
[3] Semicontinuity properties of Kazhdan–Lusztig cells, New Zealand J. Math., Volume 39 (2009), pp. 171-192 | MR | Zbl
[4] On Kazhdan–Lusztig cells in type , J. Algebraic Combin., Volume 31 (2010) no. 1, pp. 53-82 | DOI | MR | Zbl
[5] Erratum to: On Kazhdan–Lusztig cells in type , J. Algebraic Combin., Volume 35 (2012) no. 3, pp. 515-517 | DOI | MR | Zbl
[6] Hecke algebras with unequal parameters and Vogan’s left cell invariants, Representations of reductive groups (Prog. Math.), Volume 312, Birkhäuser/Springer, Cham, 2015, pp. 173-187 | DOI | MR | Zbl
[7] On domino insertion and Kazhdan–Lusztig cells in type , Representation theory of algebraic groups and quantum groups (Progr. Math.), Volume 284, Birkhäuser/Springer, New York, 2010, pp. 33-54 | DOI | MR | Zbl
[8] Left cells in type with unequal parameters, Represent. Theory, Volume 7 (2003), pp. 587-609 | DOI | MR | Zbl
[9] On the classification of primitive ideals for complex classical Lie algebras. I, Compositio Math., Volume 75 (1990) no. 2, pp. 135-169 | Numdam | MR | Zbl
[10] On the classification of primitive ideals for complex classical Lie algebra. II, Compositio Math., Volume 81 (1992) no. 3, pp. 307-336 | MR | Zbl
[11] On the classification of primitive ideals for complex classical Lie algebras. III, Compositio Math., Volume 88 (1993) no. 2, pp. 187-234 | Numdam | MR | Zbl
[12] On the induction of Kazhdan–Lusztig cells, Bull. London Math. Soc., Volume 35 (2003) no. 5, pp. 608-614 | DOI | MR | Zbl
[13] Computing Kazhdan–Lusztig cells for unequal parameters, J. Algebra, Volume 281 (2004) no. 1, pp. 342-365 | DOI | MR | Zbl
[14] Relative Kazhdan–Lusztig cells, Represent. Theory, Volume 10 (2006), p. 481-524) | DOI | MR | Zbl
[15] : computing with (finite) Coxeter groups and Iwahori–Hecke algebras, LMS J. Comput. Math., Volume 15 (2012), pp. 231-256 | DOI | MR | Zbl
[16] Characters of finite Coxeter groups and Iwahori–Hecke algebras, London Mathematical Society Monographs. New Series, 21, The Clarendon Press, Oxford University Press, New York, 2000, xvi+446 pages | MR | Zbl
[17] Einhüllende Algebren halbeinfacher Lie-Algebren, Ergebnisse der Mathematik und ihrer Grenzgebiete (3), 3, Springer-Verlag, Berlin, 1983, ii+298 pages | DOI | MR | Zbl
[18] Representations of Coxeter groups and Hecke algebras, Invent. Math., Volume 53 (1979) no. 2, pp. 165-184 | DOI | MR | Zbl
[19] The art of computer programming. Volume 3, Addison–Wesley Publishing Co., Reading, Mass.–London–Don Mills, Ont., 1973, xi+722 pp. (1 foldout) pages (Sorting and searching, Addison–Wesley Series in Computer Science and Information Processing) | MR | Zbl
[20] Left cells in Weyl groups, Lie group representations, I (College Park, Md., 1982/1983) (Lecture Notes in Math.), Volume 1024, Springer, Berlin, 1983, pp. 99-111 | DOI | MR | Zbl
[21] Hecke algebras with unequal parameters, CRM Monograph Series, 18, American Mathematical Society, Providence, RI, 2003, vi+136 pages | MR | Zbl
[22] Hecke algebras with unequal parameters (2014) (http://arxiv.org/pdf/math/0208154.pdf)
[23] Knuth relations for the hyperoctahedral groups, J. Algebraic Combin., Volume 29 (2009) no. 4, pp. 509-535 | DOI | MR | Zbl
[24] Longest increasing and decreasing subsequences, Canad. J. Math., Volume 13 (1961), pp. 179-191 | DOI | MR | Zbl
[25] A generalized -invariant for the primitive spectrum of a semisimple Lie algebra, Math. Ann., Volume 242 (1979) no. 3, pp. 209-224 | DOI | MR | Zbl
Cited by Sources: