A new partial order is defined on the set of Dyck paths of a given length. This partial order is proved to be a meet-semilattice. Its intervals are enumerated and a specific interval is connected with an existing polytope coming from algebraic topology.
Revised:
Accepted:
Published online:
Keywords: Dyck path, semilattice, enumerative combinatorics, interval, Hochschild polytope
Chapoton, Frédéric 1
@article{ALCO_2020__3_2_433_0, author = {Chapoton, Fr\'ed\'eric}, title = {Some properties of a new partial order {on~Dyck} paths}, journal = {Algebraic Combinatorics}, pages = {433--463}, publisher = {MathOA foundation}, volume = {3}, number = {2}, year = {2020}, doi = {10.5802/alco.98}, language = {en}, url = {https://alco.centre-mersenne.org/articles/10.5802/alco.98/} }
TY - JOUR AU - Chapoton, Frédéric TI - Some properties of a new partial order on Dyck paths JO - Algebraic Combinatorics PY - 2020 SP - 433 EP - 463 VL - 3 IS - 2 PB - MathOA foundation UR - https://alco.centre-mersenne.org/articles/10.5802/alco.98/ DO - 10.5802/alco.98 LA - en ID - ALCO_2020__3_2_433_0 ER -
Chapoton, Frédéric. Some properties of a new partial order on Dyck paths. Algebraic Combinatorics, Volume 3 (2020) no. 2, pp. 433-463. doi : 10.5802/alco.98. https://alco.centre-mersenne.org/articles/10.5802/alco.98/
[1] Higher trivariate diagonal harmonics via generalized Tamari posets, J. Comb., Volume 3 (2012) no. 3, pp. 317-341 | DOI | MR | Zbl
[2] Intervals in Catalan lattices and realizers of triangulations, J. Comb. Theory, Ser. A, Volume 116 (2009) no. 1, pp. 55-75 | DOI | MR | Zbl
[3] The number of intervals in the -Tamari lattices, Electron. J. Comb., Volume 18 (2011) no. 2, Paper no. P31, 26 pages | MR | Zbl
[4] Polynomial equations with one catalytic variable, algebraic series and map enumeration, J. Comb. Theory, Ser. B, Volume 96 (2006) no. 5, pp. 623-672 | DOI | MR | Zbl
[5] Sur le nombre d’intervalles dans les treillis de Tamari, Sémin. Lothar. Comb., Volume 55 (2005/07), Paper no. Art. B55f, 18 pages | MR | Zbl
[6] On the categories of modules over the Tamari posets, Associahedra, Tamari lattices and related structures (Prog. Math.), Volume 299, Birkhäuser/Springer, Basel, 2012, pp. 269-280 | DOI | MR | Zbl
[7] Planar triangulations, bridgeless planar maps and Tamari intervals, Eur. J. Comb., Volume 70 (2018), pp. 75-91 | DOI | MR | Zbl
[8] A trinity of duality: non-separable planar maps, -trees and synchronized intervals, Adv. Appl. Math., Volume 95 (2018), pp. 1-30 | DOI | MR | Zbl
[9] The enumeration of generalized Tamari intervals, Eur. J. Comb., Volume 61 (2017), pp. 69-84 | DOI | MR | Zbl
[10] Free lattices, Math. Surv. Monogr., 42, American Mathematical Society, Providence, RI, 1995, viii+293 pages | DOI | MR | Zbl
[11] Problèmes d’associativité: Une structure de treillis finis induite par une loi demi-associative, J. Comb. Theory, Volume 2 (1967), pp. 215-242 | DOI | MR | Zbl
[12] Lattice theory: foundation, Birkhäuser/Springer Basel AG, Basel, 2011, xxx+613 pages | DOI | MR | Zbl
[13] Universal derived equivalences of posets of tilting modules (2007) (https://arxiv.org/abs/0708.1287)
[14] Coxeter transformations associated with finite-dimensional algebras, Computational methods for representations of groups and algebras (Essen, 1997) (Prog. Math.), Volume 173, Birkhäuser, Basel, 1999, pp. 287-308 | DOI | MR | Zbl
[15] The diagonal of the Stasheff polytope, Higher structures in geometry and physics (Prog. Math.), Volume 287, Birkhäuser/Springer, New York, 2011, pp. 269-292 | DOI | MR | Zbl
[16] The diagonal of the associahedra (2019) (https://arxiv.org/abs/1902.08059)
[17] Associahedra, Tamari lattices and related structures (Müller-Hoissen, Folkert; Pallo, Jean Marcel; Stasheff, Jim, eds.), Prog. Math., 299, Birkhäuser/Springer, Basel, 2012, xx+433 pages (Tamari memorial Festschrift) | DOI | MR | Zbl
[18] Right-arm rotation distance between binary trees, Inf. Process. Lett., Volume 87 (2003) no. 4, pp. 173-177 | DOI | MR | Zbl
[19] A combinatorial model for the free loop fibration (2017) (https://arxiv.org/abs/1712.02644) | Zbl
[20] Exceptional and modern intervals of the Tamari lattice (2018) (to appear in Sémin. Lothar. Comb.)
[21] The bitwisted Cartesian model for the free loop fibration, Topology Appl., Volume 156 (2009) no. 5, pp. 897-910 | DOI | MR | Zbl
[22] On the homology theory of the closed geodesic problem, Rep. Enlarged Sess. Semin. I. Vekua Inst. Appl. Math., Volume 25 (2011), pp. 113-116 | MR
[23] A census of planar maps, Can. J. Math., Volume 15 (1963), pp. 249-271 | DOI | MR | Zbl
Cited by Sources: