We extend a result of Lewis and Reiner from finite Coxeter groups to Coxeter groups of finite rank by showing that two reflection factorizations of a Coxeter element lie in the same Hurwitz orbit if and only if they share the same multiset of conjugacy classes.
Revised:
Accepted:
Published online:
Keywords: Coxeter groups, Hurwitz action, reflection factorizations, Coxeter element
Wegener, Patrick 1; Yahiatene, Sophiane 2
@article{ALCO_2020__3_2_465_0, author = {Wegener, Patrick and Yahiatene, Sophiane}, title = {A note on non-reduced reflection factorizations of {Coxeter} elements}, journal = {Algebraic Combinatorics}, pages = {465--469}, publisher = {MathOA foundation}, volume = {3}, number = {2}, year = {2020}, doi = {10.5802/alco.99}, language = {en}, url = {https://alco.centre-mersenne.org/articles/10.5802/alco.99/} }
TY - JOUR AU - Wegener, Patrick AU - Yahiatene, Sophiane TI - A note on non-reduced reflection factorizations of Coxeter elements JO - Algebraic Combinatorics PY - 2020 SP - 465 EP - 469 VL - 3 IS - 2 PB - MathOA foundation UR - https://alco.centre-mersenne.org/articles/10.5802/alco.99/ DO - 10.5802/alco.99 LA - en ID - ALCO_2020__3_2_465_0 ER -
%0 Journal Article %A Wegener, Patrick %A Yahiatene, Sophiane %T A note on non-reduced reflection factorizations of Coxeter elements %J Algebraic Combinatorics %D 2020 %P 465-469 %V 3 %N 2 %I MathOA foundation %U https://alco.centre-mersenne.org/articles/10.5802/alco.99/ %R 10.5802/alco.99 %G en %F ALCO_2020__3_2_465_0
Wegener, Patrick; Yahiatene, Sophiane. A note on non-reduced reflection factorizations of Coxeter elements. Algebraic Combinatorics, Volume 3 (2020) no. 2, pp. 465-469. doi : 10.5802/alco.99. https://alco.centre-mersenne.org/articles/10.5802/alco.99/
[1] A note on the transitive Hurwitz action on decompositions of parabolic Coxeter elements, Proc. Am. Math. Soc., Ser. B, Volume 1 (2014), pp. 149-154 | DOI | MR | Zbl
[2] The dual braid monoid, Ann. Sci. Éc. Norm. Supér. (4), Volume 36 (2003) no. 5, pp. 647-683 | DOI | Numdam | MR | Zbl
[3] Letter to E. Looijenga (1974) http://homepage.rub.de/christian.stump/Deligne_Looijenga_Letter_09-03-1974.pdf
[4] Reflection subgroups of Coxeter systems, J. Algebra, Volume 135 (1990) no. 1, pp. 57-73 | DOI | MR | Zbl
[5] On the “Bruhat graph” of a Coxeter system, Compos. Math., Volume 78 (1991) no. 2, pp. 185-191 | Numdam | MR | Zbl
[6] Reflection groups and Coxeter groups, Cambridge Studies in Advanced Mathematics, 29, Cambridge University Press, Cambridge, 1990, xii+204 pages | DOI | MR | Zbl
[7] Exceptional sequences and clusters, J. Algebra, Volume 323 (2010) no. 8, pp. 2183-2202 | DOI | MR | Zbl
[8] Circuits and Hurwitz action in finite root systems, New York J. Math., Volume 22 (2016), pp. 1457-1486 | MR | Zbl
[9] Hurwitz action in Coxeter groups and elliptic Weyl groups, Ph. D. Thesis, Universität Bielefeld (Germany) (2017) https://pub.uni-bielefeld.de/record/2913106
Cited by Sources: