A note on non-reduced reflection factorizations of Coxeter elements
Algebraic Combinatorics, Volume 3 (2020) no. 2, pp. 465-469.

We extend a result of Lewis and Reiner from finite Coxeter groups to Coxeter groups of finite rank by showing that two reflection factorizations of a Coxeter element lie in the same Hurwitz orbit if and only if they share the same multiset of conjugacy classes.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/alco.99
Classification: 05E15, 05E18, 20F55
Keywords: Coxeter groups, Hurwitz action, reflection factorizations, Coxeter element

Wegener, Patrick 1; Yahiatene, Sophiane 2

1 Technische Universität Kaiserslautern Fachbereich Mathematik Postfach 3049 67653 Kaiserslautern Germany
2 Universität Bielefeld Fakultät für Mathematik Postfach 100131 33501 Bielefeld Germany
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{ALCO_2020__3_2_465_0,
     author = {Wegener, Patrick and Yahiatene, Sophiane},
     title = {A note on non-reduced reflection factorizations of {Coxeter} elements},
     journal = {Algebraic Combinatorics},
     pages = {465--469},
     publisher = {MathOA foundation},
     volume = {3},
     number = {2},
     year = {2020},
     doi = {10.5802/alco.99},
     language = {en},
     url = {https://alco.centre-mersenne.org/articles/10.5802/alco.99/}
}
TY  - JOUR
AU  - Wegener, Patrick
AU  - Yahiatene, Sophiane
TI  - A note on non-reduced reflection factorizations of Coxeter elements
JO  - Algebraic Combinatorics
PY  - 2020
SP  - 465
EP  - 469
VL  - 3
IS  - 2
PB  - MathOA foundation
UR  - https://alco.centre-mersenne.org/articles/10.5802/alco.99/
DO  - 10.5802/alco.99
LA  - en
ID  - ALCO_2020__3_2_465_0
ER  - 
%0 Journal Article
%A Wegener, Patrick
%A Yahiatene, Sophiane
%T A note on non-reduced reflection factorizations of Coxeter elements
%J Algebraic Combinatorics
%D 2020
%P 465-469
%V 3
%N 2
%I MathOA foundation
%U https://alco.centre-mersenne.org/articles/10.5802/alco.99/
%R 10.5802/alco.99
%G en
%F ALCO_2020__3_2_465_0
Wegener, Patrick; Yahiatene, Sophiane. A note on non-reduced reflection factorizations of Coxeter elements. Algebraic Combinatorics, Volume 3 (2020) no. 2, pp. 465-469. doi : 10.5802/alco.99. https://alco.centre-mersenne.org/articles/10.5802/alco.99/

[1] Baumeister, Barbara; Dyer, Matthew; Stump, Christian; Wegener, Patrick A note on the transitive Hurwitz action on decompositions of parabolic Coxeter elements, Proc. Am. Math. Soc., Ser. B, Volume 1 (2014), pp. 149-154 | DOI | MR | Zbl

[2] Bessis, David The dual braid monoid, Ann. Sci. Éc. Norm. Supér. (4), Volume 36 (2003) no. 5, pp. 647-683 | DOI | Numdam | MR | Zbl

[3] Deligne, Pierre Letter to E. Looijenga (1974) http://homepage.rub.de/christian.stump/Deligne_Looijenga_Letter_09-03-1974.pdf

[4] Dyer, Matthew Reflection subgroups of Coxeter systems, J. Algebra, Volume 135 (1990) no. 1, pp. 57-73 | DOI | MR | Zbl

[5] Dyer, Matthew On the “Bruhat graph” of a Coxeter system, Compos. Math., Volume 78 (1991) no. 2, pp. 185-191 | Numdam | MR | Zbl

[6] Humphreys, James E. Reflection groups and Coxeter groups, Cambridge Studies in Advanced Mathematics, 29, Cambridge University Press, Cambridge, 1990, xii+204 pages | DOI | MR | Zbl

[7] Igusa, Kiyoshi; Schiffler, Ralf Exceptional sequences and clusters, J. Algebra, Volume 323 (2010) no. 8, pp. 2183-2202 | DOI | MR | Zbl

[8] Lewis, Joel Brewster; Reiner, Victor Circuits and Hurwitz action in finite root systems, New York J. Math., Volume 22 (2016), pp. 1457-1486 | MR | Zbl

[9] Wegener, Patrick Hurwitz action in Coxeter groups and elliptic Weyl groups, Ph. D. Thesis, Universität Bielefeld (Germany) (2017) https://pub.uni-bielefeld.de/record/2913106

Cited by Sources: