Motivated by a recent conjecture of R. P. Stanley we offer a lower bound for the sum of the coefficients of a Schubert polynomial in terms of -pattern containment.
Revised: 2018-05-28
Accepted: 2018-06-12
Published online: 2018-09-10
DOI: https://doi.org/10.5802/alco.27
Keywords: Schubert polynomials, permutation patterns
@article{ALCO_2018__1_4_415_0, author = {Weigandt, Anna E.}, title = {Schubert polynomials, 132-patterns, and Stanley's conjecture}, journal = {Algebraic Combinatorics}, pages = {415--423}, publisher = {MathOA foundation}, volume = {1}, number = {4}, year = {2018}, doi = {10.5802/alco.27}, mrnumber = {3875071}, zbl = {1397.05205}, language = {en}, url = {https://alco.centre-mersenne.org/item/ALCO_2018__1_4_415_0/} }
Weigandt, Anna E. Schubert polynomials, 132-patterns, and Stanley’s conjecture. Algebraic Combinatorics, Volume 1 (2018) no. 4, pp. 415-423. doi : 10.5802/alco.27. https://alco.centre-mersenne.org/item/ALCO_2018__1_4_415_0/
[1] RC-graphs and Schubert polynomials, Exp. Math., Volume 2 (1993) no. 4, pp. 257-269 | Article | MR 1281474 | Zbl 0803.05054
[2] Some combinatorial properties of Schubert polynomials, J. Algebr. Comb., Volume 2 (1993) no. 4, pp. 345-374 | Article | MR 1241505 | Zbl 0790.05093
[3] The Yang-Baxter equation, symmetric functions, and Schubert polynomials, Discrete Math., Volume 153 (1996) no. 1-3, pp. 123-143 | Article | MR 1394950 | Zbl 0852.05078
[4] Gröbner geometry of Schubert polynomials, Ann. Math. (2005), pp. 1245-1318 | Article | Zbl 1089.14007
[5] Polynômes de Schubert, C. R. Math. Acad. Sci. Paris, Volume 295 (1982) no. 3, pp. 447-450 | Zbl 0495.14031
[6] Notes on Schubert polynomials, Publications du Laboratoire de combinatoire et d’informatique mathématique, Volume 6, Université du Québec à Montréal, 1991
[7] Symmetric functions, Schubert polynomials, and degeneracy loci, SMF/AMS Texts and Monographs, Volume 6, American Mathematical Society, 2001 | MR 1852463 | Zbl 0998.14023
[8] Some Schubert shenanigans (2017) (https://arxiv.org/abs/1704.00851 )