We extend a result of Lewis and Reiner from finite Coxeter groups to Coxeter groups of finite rank by showing that two reflection factorizations of a Coxeter element lie in the same Hurwitz orbit if and only if they share the same multiset of conjugacy classes.
Revised: 2019-06-24
Accepted: 2019-09-23
Published online: 2020-04-01
Classification: 05E15, 05E18, 20F55
Keywords: Coxeter groups, Hurwitz action, reflection factorizations, Coxeter element
@article{ALCO_2020__3_2_465_0, author = {Wegener, Patrick and Yahiatene, Sophiane}, title = {A note on non-reduced reflection factorizations of Coxeter elements}, journal = {Algebraic Combinatorics}, pages = {465--469}, publisher = {MathOA foundation}, volume = {3}, number = {2}, year = {2020}, doi = {10.5802/alco.99}, language = {en}, url = {alco.centre-mersenne.org/item/ALCO_2020__3_2_465_0/} }
Wegener, Patrick; Yahiatene, Sophiane. A note on non-reduced reflection factorizations of Coxeter elements. Algebraic Combinatorics, Volume 3 (2020) no. 2, pp. 465-469. doi : 10.5802/alco.99. https://alco.centre-mersenne.org/item/ALCO_2020__3_2_465_0/
[1] A note on the transitive Hurwitz action on decompositions of parabolic Coxeter elements, Proc. Am. Math. Soc., Ser. B, Volume 1 (2014), pp. 149-154 | Article | MR 3294251 | Zbl 1343.20041
[2] The dual braid monoid, Ann. Sci. Éc. Norm. Supér. (4), Volume 36 (2003) no. 5, pp. 647-683 | Article | Numdam | MR 2032983 | Zbl 1064.20039
[3] Letter to E. Looijenga (1974) http://homepage.rub.de/christian.stump/Deligne_Looijenga_Letter_09-03-1974.pdf
[4] Reflection subgroups of Coxeter systems, J. Algebra, Volume 135 (1990) no. 1, pp. 57-73 | Article | MR 1076077 | Zbl 0712.20026
[5] On the “Bruhat graph” of a Coxeter system, Compos. Math., Volume 78 (1991) no. 2, pp. 185-191 | Numdam | MR 1104786 | Zbl 0784.20019
[6] Reflection groups and Coxeter groups, Cambridge Studies in Advanced Mathematics, Volume 29, Cambridge University Press, Cambridge, 1990, xii+204 pages | Article | MR 1066460 | Zbl 0725.20028
[7] Exceptional sequences and clusters, J. Algebra, Volume 323 (2010) no. 8, pp. 2183-2202 | Article | MR 2596373 | Zbl 1239.16019
[8] Circuits and Hurwitz action in finite root systems, New York J. Math., Volume 22 (2016), pp. 1457-1486 | MR 3603073 | Zbl 1392.20033
[9] Hurwitz action in Coxeter groups and elliptic Weyl groups (2017) https://pub.uni-bielefeld.de/record/2913106 (Ph. D. Thesis)