We give a -crystal structure on multiset-valued tableaux, hook-valued tableaux, and valued-set tableaux, whose generating functions are the weak symmetric, canonical, and dual weak symmetric Grothendieck functions, respectively. We show the result is isomorphic to a (generally infinite) direct sum of highest weight crystals, and for multiset-valued tableaux and valued-set tableaux, we provide an explicit bijection. As a consequence, these generating functions are Schur positive; in particular, the canonical Grothendieck functions, which was not previously known. We also give an extension of Hecke insertion to express a dual stable Grothendieck function as a sum of Schur functions.
Revised:
Accepted:
Published online:
DOI: 10.5802/alco.111
Mots-clés : Canonical Grothendieck function, crystal, quantum group, multiset-valued tableau, hook-valued tableau, valued-set tableau.
Hawkes, Graham 1; Scrimshaw, Travis 2
@article{ALCO_2020__3_3_727_0, author = {Hawkes, Graham and Scrimshaw, Travis}, title = {Crystal structures for canonical {Grothendieck} functions}, journal = {Algebraic Combinatorics}, pages = {727--755}, publisher = {MathOA foundation}, volume = {3}, number = {3}, year = {2020}, doi = {10.5802/alco.111}, mrnumber = {4113604}, zbl = {1441.05236}, language = {en}, url = {https://alco.centre-mersenne.org/articles/10.5802/alco.111/} }
TY - JOUR AU - Hawkes, Graham AU - Scrimshaw, Travis TI - Crystal structures for canonical Grothendieck functions JO - Algebraic Combinatorics PY - 2020 SP - 727 EP - 755 VL - 3 IS - 3 PB - MathOA foundation UR - https://alco.centre-mersenne.org/articles/10.5802/alco.111/ DO - 10.5802/alco.111 LA - en ID - ALCO_2020__3_3_727_0 ER -
%0 Journal Article %A Hawkes, Graham %A Scrimshaw, Travis %T Crystal structures for canonical Grothendieck functions %J Algebraic Combinatorics %D 2020 %P 727-755 %V 3 %N 3 %I MathOA foundation %U https://alco.centre-mersenne.org/articles/10.5802/alco.111/ %R 10.5802/alco.111 %G en %F ALCO_2020__3_3_727_0
Hawkes, Graham; Scrimshaw, Travis. Crystal structures for canonical Grothendieck functions. Algebraic Combinatorics, Volume 3 (2020) no. 3, pp. 727-755. doi : 10.5802/alco.111. https://alco.centre-mersenne.org/articles/10.5802/alco.111/
[1] Combinatorial expansions in -theoretic bases, Electron. J. Combin., Volume 19 (2012) no. 4, Paper no. Paper 39, 27 pages | MR | Zbl
[2] A minimaj-preserving crystal on ordered multiset partitions, Adv. in Appl. Math., Volume 95 (2018), pp. 96-115 | DOI | MR | Zbl
[3] A Littlewood–Richardson rule for the -theory of Grassmannians, Acta Math., Volume 189 (2002) no. 1, pp. 37-78 | DOI | MR | Zbl
[4] Stable Grothendieck polynomials and -theoretic factor sequences, Math. Ann., Volume 340 (2008) no. 2, pp. 359-382 | DOI | MR | Zbl
[5] -theory of minuscule varieties, J. Reine Angew. Math., Volume 719 (2016), pp. 133-171 | DOI | MR | Zbl
[6] Crystal bases: Representations and Combinatorics, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2017, xii+279 pages | DOI | MR | Zbl
[7] Grothendieck polynomials and the Yang–Baxter equation, Formal Power Series and Algebraic Combinatorics/Séries Formelles et Combinatoire Algébrique, DIMACS, Piscataway, NJ, 1994, pp. 183-189 | MR | Zbl
[8] The Yang–Baxter equation, symmetric functions, and Schubert polynomials, Discrete Math., Volume 153 (1996) no. 1-3, pp. 123-143 | DOI | MR | Zbl
[9] -Knuth equivalence for increasing tableaux, Electron. J. Combin., Volume 23 (2016) no. 1, Paper no. Paper 1.40, 37 pages | MR | Zbl
[10] A Littlewood–Richardson rule for dual stable Grothendieck polynomials, J. Combin. Theory Ser. A, Volume 151 (2017), pp. 23-35 | DOI | MR | Zbl
[11] A Thom–Porteous formula for connective -theory using algebraic cobordism, J. K-Theory, Volume 14 (2014) no. 2, pp. 343-369 | DOI | MR | Zbl
[12] Peterson isomorphism in -theory and relativistic Toda lattice (2018) (To appear in Int. Math. Res. Not. IMRN) | DOI
[13] Excited Young diagrams and equivariant Schubert calculus, Trans. Amer. Math. Soc., Volume 361 (2009) no. 10, pp. 5193-5221 | DOI | MR | Zbl
[14] A proof of -theoretic Littlewood–Richardson rules by Bender–Knuth-type involutions, Math. Res. Lett., Volume 21 (2014) no. 2, pp. 333-339 | DOI | MR | Zbl
[15] Grothendieck polynomials and the boson-fermion correspondence (2019) (Preprint, https://arxiv.org/abs/1905.07692) | Zbl
[16] Crystalizing the -analogue of universal enveloping algebras, Comm. Math. Phys., Volume 133 (1990) no. 2, pp. 249-260 | DOI | MR | Zbl
[17] On crystal bases of the -analogue of universal enveloping algebras, Duke Math. J., Volume 63 (1991) no. 2, pp. 465-516 | DOI | MR | Zbl
[18] The crystal base and Littelmann’s refined Demazure character formula, Duke Math. J., Volume 71 (1993) no. 3, pp. 839-858 | DOI | MR | Zbl
[19] Combinatorial Hopf algebras and -homology of Grassmannians, Int. Math. Res. Not. IMRN, Volume 2007 (2007) no. 24, Paper no. Art. ID rnm125, 48 pages | DOI | MR | Zbl
[20] The Plactic Monoid, Algebraic Combinatorics on Words (Lothaire, M., ed.), Cambridge University Press, Cambridge, 2002
[21] Structure de Hopf de l’anneau de cohomologie et de l’anneau de Grothendieck d’une variété de drapeaux, C. R. Acad. Sci. Paris Sér. I Math., Volume 295 (1982) no. 11, pp. 629-633 | MR | Zbl
[22] Symmetry and flag manifolds, Invariant theory (Montecatini, 1982) (Lecture Notes in Math.), Volume 996, Springer, Berlin, 1983, pp. 118-144 | DOI | MR | Zbl
[23] Combinatorial aspects of the -theory of Grassmannians, Ann. Comb., Volume 4 (2000) no. 1, pp. 67-82 | DOI | MR | Zbl
[24] On the combinatorics of crystal graphs. I. Lusztig’s involution, Adv. Math., Volume 211 (2007) no. 1, pp. 204-243 | DOI | MR | Zbl
[25] Générateurs et relations des groupes de Weyl généralisés, C. R. Acad. Sci. Paris, Volume 258 (1964), pp. 3419-3422 | MR | Zbl
[26] Set-valued skyline fillings (2016) (Preprint, http://arxiv.org/abs/1611.08777) | Zbl
[27] Crystal structures for symmetric Grothendieck polynomials (2018) (Preprint, http://arxiv.org/abs/1807.03294) | Zbl
[28] Polynomials from combinatorial -theory (2019) (To appear in Canad. J. Math., http://arxiv.org/abs/1806.03802) | DOI | Zbl
[29] Vertex models, TASEP and Grothendieck polynomials, J. Phys. A, Volume 46 (2013) no. 35, Paper no. 355201, 26 pages | DOI | MR | Zbl
[30] -theoretic boson-fermion correspondence and melting crystals, J. Phys. A, Volume 47 (2014) no. 44, Paper no. 445202, 30 pages | DOI | MR | Zbl
[31] Combinatorics of -theory via a -theoretic Poirier–Reutenauer bialgebra, Discrete Math., Volume 339 (2016) no. 3, pp. 1095-1115 | DOI | MR | Zbl
[32] K-theoretic crystals for set-valued tableaux of rectangular shape (2019) (Preprint, http://arxiv.org/abs/1904.09674) | Zbl
[33] Decompositions of Grothendieck polynomials, Int. Math. Res. Not. IMRN, Volume 2019 (2019) no. 10, pp. 3214-3241 | DOI | MR | Zbl
[34] Genomic tableaux, J. Algebraic Combin., Volume 45 (2017) no. 3, pp. 649-685 | DOI | MR | Zbl
[35] Puzzles in -homology of Grassmannians, Pacific J. Math., Volume 303 (2019) no. 2, pp. 703-727 | DOI | MR | Zbl
[36] Poset edge densities, nearly reduced words, and barely set-valued tableaux, J. Combin. Theory Ser. A, Volume 158 (2018), pp. 66-125 | DOI | MR | Zbl
[37] Sage-Combinat: enhancing Sage as a toolbox for computer exploration in algebraic combinatorics, 2008 (https://wiki.sagemath.org/combinat)
[38] Sage Mathematics Software (Version 8.8), 2019 (https://www.sagemath.org)
[39] Enumerative combinatorics. Vol. 2, Cambridge Studies in Advanced Mathematics, 62, Cambridge University Press, Cambridge, 1999, xii+581 pages (With a foreword by Gian-Carlo Rota and appendix 1 by Sergey Fomin) | DOI | MR | Zbl
[40] A local characterization of simply-laced crystals, Trans. Amer. Math. Soc., Volume 355 (2003) no. 12, pp. 4807-4823 | DOI | MR | Zbl
[41] A jeu de taquin theory for increasing tableaux, with applications to -theoretic Schubert calculus, Algebra Number Theory, Volume 3 (2009) no. 2, pp. 121-148 | DOI | MR | Zbl
[42] Longest increasing subsequences, Plancherel-type measure and the Hecke insertion algorithm, Adv. in Appl. Math., Volume 46 (2011) no. 1-4, pp. 610-642 | DOI | MR | Zbl
[43] Littlewood–Richardson coefficients for Grothendieck polynomials from integrability, J. Reine Angew. Math., Volume 757 (2019), pp. 159-195 | DOI | MR | Zbl
[44] Duality and deformations of stable Grothendieck polynomials, J. Algebraic Combin., Volume 45 (2017) no. 1, pp. 295-344 | DOI | MR | Zbl
Cited by Sources: