Cyclic sieving, skew Macdonald polynomials and Schur positivity
Algebraic Combinatorics, Volume 3 (2020) no. 4, pp. 913-939.

When λ is a partition, the specialized non-symmetric Macdonald polynomial E λ (x;q;0) is symmetric and related to a modified Hall–Littlewood polynomial. We show that whenever all parts of the integer partition λ are multiples of n, the underlying set of fillings exhibit the cyclic sieving phenomenon (CSP) under an n-fold cyclic shift of the columns. The corresponding CSP polynomial is given by E λ (x;q;0). In addition, we prove a refined cyclic sieving phenomenon where the content of the fillings is fixed. This refinement is closely related to an earlier result by B. Rhoades.

We also introduce a skew version of E λ (x;q;0). We show that these are symmetric and Schur positive via a variant of the Robinson–Schenstedt–Knuth correspondence and we also describe crystal raising and lowering operators for the underlying fillings. Moreover, we show that the skew specialized non-symmetric Macdonald polynomials are in some cases vertical-strip LLT polynomials. As a consequence, we get a combinatorial Schur expansion of a new family of LLT polynomials.

Received: 2019-08-15
Revised: 2020-03-25
Accepted: 2020-04-12
Published online: 2020-08-20
DOI: https://doi.org/10.5802/alco.123
Classification: 05E10,  05E05,  06A07
Keywords: Cyclic sieving, Macdonald polynomials, LLT polynomials, crystals, Schur-positivity.
@article{ALCO_2020__3_4_913_0,
     author = {Alexandersson, Per and Uhlin, Joakim},
     title = {Cyclic sieving, skew Macdonald polynomials and Schur positivity},
     journal = {Algebraic Combinatorics},
     publisher = {MathOA foundation},
     volume = {3},
     number = {4},
     year = {2020},
     pages = {913-939},
     doi = {10.5802/alco.123},
     language = {en},
     url = {alco.centre-mersenne.org/item/ALCO_2020__3_4_913_0/}
}
Alexandersson, Per; Uhlin, Joakim. Cyclic sieving, skew Macdonald polynomials and Schur positivity. Algebraic Combinatorics, Volume 3 (2020) no. 4, pp. 913-939. doi : 10.5802/alco.123. https://alco.centre-mersenne.org/item/ALCO_2020__3_4_913_0/

[1] Ahlbach, Connor; Swanson, Joshua P. Refined cyclic sieving on words for the major index statistic, European J. Combin., Volume 73 (2018), pp. 37-60 | Article | MR 3836732 | Zbl 1393.05263

[2] Alexandersson, Per Non-symmetric Macdonald polynomials and Demazure–Lusztig operators, Sémin. Lothar. Comb., Volume 76 (2019), B76d, 27 pages

[3] Alexandersson, Per; Linusson, Svante; Potka, Samu The cyclic sieving phenomenon on circular Dyck paths, Electron. J. Combin., Volume 26 (2019) no. 4, Paper 4.16, 32 pages | Article | MR 4025420 | Zbl 1422.05006

[4] Alexandersson, Per; Panova, Greta LLT polynomials, chromatic quasisymmetric functions and graphs with cycles, Discrete Math., Volume 341 (2018) no. 12, pp. 3453-3482 | Article | MR 3862644 | Zbl 1397.05197

[5] Alexandersson, Per; Pfannerer, Stephan; Rubey, Martin; Uhlin, Joakim Skew characters and cyclic sieving (2020) (https://arxiv.org/abs/2004.01140)

[6] Alexandersson, Per; Sawhney, Mehtaab A major-index preserving map on fillings, Electron. J. Combin., Volume 24 (2017) no. 4, Paper 4.3, 30 pages | Article | MR 3711036 | Zbl 1372.05007

[7] Alexandersson, Per; Sawhney, Mehtaab Properties of non-symmetric Macdonald polynomials at q=1 and q=0, Ann. Comb., Volume 23 (2019) no. 2, pp. 219-239 | Article | MR 3962853 | Zbl 1416.05290

[8] Assaf, Sami Nonsymmetric Macdonald polynomials and a refinement of Kostka–Foulkes polynomials, Trans. Amer. Math. Soc., Volume 370 (2018) no. 12, pp. 8777-8796 | Article | MR 3864395 | Zbl 1404.33017

[9] Assaf, Sami; González, Nicolle S. Crystal graphs, key tabloids, and nonsymmetric Macdonald polynomials, Sém. Lothar. Combin., Volume 80B (2018), Art. 81, 12 pages (30th International Conference on Formal Power Series and Algebraic Combinatorics) | MR 3940656 | Zbl 07054676

[10] Bandlow, Jason Combinatorics of Macdonald polynomials and extensions (2007) (https://escholarship.org/uc/item/5zd262sp) (Ph. D. Thesis) | MR 2710073

[11] Bennett, Max; Madill, Blake; Stokke, Anna Jeu-de-taquin promotion and a cyclic sieving phenomenon for semistandard hook tableaux, Discrete Math., Volume 319 (2014), pp. 62-67 | Article | MR 3145263 | Zbl 1281.05128

[12] Berget, Andrew; Eu, Sen-Peng; Reiner, Victor Constructions for cyclic sieving phenomena, SIAM J. Discrete Math., Volume 25 (2011) no. 3, pp. 1297-1314 | Article | MR 2837599 | Zbl 1237.05209

[13] Blasiak, Jonah Haglund’s conjecture on 3-column Macdonald polynomials, Math. Z., Volume 283 (2016) no. 1-2, pp. 601-628 | Article | MR 3489082 | Zbl 1344.05147

[14] Bump, Daniel; Schilling, Anne Crystal bases. Representations and combinatorics, Hackensack, NJ: World Scientific, 2017, xii + 279 pages | Article | Zbl 06690908

[15] Butler, Lynne M. Subgroup lattices and symmetric functions, Mem. Amer. Math. Soc., Volume 112, American Mathematical Society, 1994 no. 539, vi+160 pages | Article | MR 1223236 | Zbl 0813.05067

[16] Cherednik, Ivan Nonsymmetric Macdonald polynomials, Internat. Math. Res. Notices (1995) no. 10, pp. 483-515 | Article | MR 1358032 | Zbl 0886.05121

[17] Désarménien, Jacques; Leclerc, Bernard; Thibon, Jean-Yves Hall–Littlewood functions and Kostka–Foulkes polynomials in representation theory, Sém. Lothar. Combin., Volume 32 (1994), Art. B32c, 38 pages | MR 1399504 | Zbl 0855.05100

[18] Fulton, William Young Tableaux: With Applications to Representation Theory and Geometry, London Mathematical Society Student Texts, Volume 35, Cambridge University Press, 1997 | Article | Zbl 0878.14034

[19] Gorodetsky, Ofir q-congruences, with applications to supercongruences and the cyclic sieving phenomenon, Int. J. Number Theory, Volume 15 (2019) no. 9, pp. 1919-1968 | Article | MR 4015520 | Zbl 1423.11043

[20] Haglund, James The q,t-Catalan numbers and the space of diagonal harmonics, University lecture series, Volume 41, American Mathematical Society, 2007 | MR 2371044 | Zbl 1142.05074

[21] Haglund, James; Haiman, Mark; Loehr, Nicholas A. A combinatorial formula for Macdonald polynomials, J. Amer. Math. Soc., Volume 18 (2005) no. 3, pp. 735-761 | Article | MR 2138143 | Zbl 1061.05101

[22] Haglund, James; Haiman, Mark; Loehr, Nicholas A. A combinatorial formula for nonsymmetric Macdonald polynomials, Amer. J. Math., Volume 130 (2008) no. 2, pp. 359-383 | Article | MR 2405160 | Zbl 1246.05162

[23] Huh, JiSun; Nam, Sun-Young; Yoo, Meesue Melting lollipop chromatic quasisymmetric functions and Schur expansion of unicellular LLTpolynomials, Discrete Math., Volume 343 (2020) no. 3, 111728, 21 pages | Article | MR 4033624 | Zbl 1431.05148

[24] Kaliszewski, Ryan; Morse, Jennifer Colorful combinatorics and Macdonald polynomials, European J. Combin., Volume 81 (2019), pp. 354-377 | Article | MR 3979340 | Zbl 1420.05180

[25] Kirillov, Anatol N.; Schilling, Anne; Shimozono, Mark Various Representations of the Generalized Kostka Polynomials, The Andrews Festschrift, Springer Berlin Heidelberg, Berlin, Heidelberg, 2001, pp. 209-226 | Article | Zbl 0921.05067

[26] Knop, Friedrich; Sahi, Siddhartha A recursion and a combinatorial formula for Jack polynomials, Invent. Math., Volume 128 (1997) no. 1, pp. 9-22 | Article | MR 1437493 | Zbl 0870.05076

[27] Krattenthaler, Christian Growth diagrams, and increasing and decreasing chains in fillings of Ferrers shapes, Adv. in Appl. Math., Volume 37 (2006) no. 3, pp. 404-431 | Article | MR 2261181 | Zbl 1108.05095

[28] Lascoux, Alain Double crystal graphs, Studies in memory of Issai Schur (Chevaleret/Rehovot, 2000) (Progr. Math.) Volume 210, Birkhäuser Boston, Boston, MA, 2003, pp. 95-114 | Article | MR 1985724 | Zbl 1060.05097

[29] Lascoux, Alain; Leclerc, Bernard; Thibon, Jean-Yves Green polynomials and Hall–Littlewood functions at roots of unity, European J. Combin., Volume 15 (1994) no. 2, pp. 173-180 | Article | MR 1261063 | Zbl 0789.05093

[30] Lascoux, Alain; Schützenberger, Marcel-Paul Sur une conjecture de H. O. Foulkes, C. R. Acad. Sci. Paris Sér. A-B, Volume 286 (1978) no. 7, p. A323-A324 | MR 472993 | Zbl 0374.20010

[31] Leclerc, Bernard; Thibon, Jean-Yves Littlewood–Richardson coefficients and Kazhdan–Lusztig polynomials, Combinatorial methods in representation theory (Kyoto, 1998) (Adv. Stud. Pure Math.) Volume 28 (2000), pp. 155-220 | Article | MR 1864481 | Zbl 1058.20006

[32] Macdonald, Ian G. Symmetric functions and Hall polynomials, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1995, x+475 pages (With contributions by A. Zelevinsky, Oxford Science Publications) | MR 1354144 | Zbl 0824.05059

[33] Oh, Young-Tak; Park, Euiyong Crystals, semistandard tableaux and cyclic sieving phenomenon, Electron. J. Combin., Volume 26 (2019) no. 4, Paper 4.39, 19 pages | Article | MR 4039345 | Zbl 1428.05329

[34] Opdam, Eric M. Harmonic analysis for certain representations of graded Hecke algebras, Acta Math., Volume 175 (1995) no. 1, pp. 75-121 | Article | MR 1353018 | Zbl 0836.43017

[35] Reiner, Victor; Stanton, Dennis; White, Dennis E. The cyclic sieving phenomenon, J. Combin. Theory Ser. A, Volume 108 (2004) no. 1, pp. 17-50 | Article | MR 2087303 | Zbl 1052.05068

[36] Rhoades, Brendon Cyclic sieving, promotion, and representation theory, J. Combin. Theory Ser. A, Volume 117 (2010) no. 1, pp. 38-76 | Article | MR 2557880 | Zbl 1230.05289

[37] Rhoades, Brendon Hall–Littlewood polynomials and fixed point enumeration, Discrete Math., Volume 310 (2010) no. 4, pp. 869-876 | Article | MR 2574838 | Zbl 1228.05294

[38] Rush, David B. Cyclic sieving and plethysm coefficients, Trans. Amer. Math. Soc., Volume 371 (2019) no. 2, pp. 923-947 | Article | MR 3885166 | Zbl 1401.05309

[39] Sagan, Bruce E. Congruence properties of q-analogs, Adv. Math., Volume 95 (1992) no. 1, pp. 127-143 | Article | MR 1176155 | Zbl 0761.11010

[40] Sagan, Bruce E. The cyclic sieving phenomenon: a survey, Surveys in combinatorics 2011 (London Math. Soc. Lecture Note Ser.) Volume 392, Cambridge Univ. Press, Cambridge, 2011, pp. 183-233 | Article | MR 2866734 | Zbl 1233.05028

[41] Shen, Linhui; Weng, Daping Cyclic Sieving and Cluster Duality for Grassmannian (2018) (https://arxiv.org/abs/1803.06901)

[42] Shimozono, Mark Crystals for dummies, Online, 2005 (https://www.aimath.org/WWN/kostka/crysdumb.pdf)

[43] Shimozono, Mark; Weyman, Jerzy Graded characters of modules supported in the closure of a nilpotent conjugacy class, European J. Combin., Volume 21 (2000) no. 2, pp. 257-288 | Article | MR 1742440 | Zbl 0956.05100

[44] Sloane, Neil J. A. The On-Line Encyclopedia of Integer Sequences, Online, 2019 (https://oeis.org) | Zbl 06989892

[45] Stanley, Richard P. Enumerative Combinatorics: Volume 2, Cambridge Studies in Advanced Mathematics, Volume 62, Cambridge University Press, 2001 | Zbl 0978.05002

[46] Stembridge, John R. A local characterization of simply-laced crystals, Trans. Amer. Math. Soc., Volume 355 (2003) no. 12, pp. 4807-4823 | Article | MR 1997585 | Zbl 1047.17007

[47] Tudose, Geanina; Zabrocki, Mike A q-Analog of Schur’s Q-Functions, Algebraic Combinatorics and Quantum Groups (Jing, Naihuan, ed.), World Scientific, 2003, pp. 135-161 | Article | Zbl 1076.05523

[48] Uhlin, Joakim Combinatorics of Macdonald polynomials and cyclic sieving (2019) (http://kth.diva-portal.org/smash/record.jsf?pid=diva2%3A1282825) (M.S Thesis)