# ALGEBRAIC COMBINATORICS

FI–sets with relations
Algebraic Combinatorics, Volume 3 (2020) no. 5, pp. 1079-1098.

Let FI denote the category whose objects are the sets $\left[n\right]=\left\{1,...,n\right\}$, and whose morphisms are injections. We study functors from the category $\mathrm{FI}$ into the category of finite sets. We write ${𝔖}_{n}$ for the symmetric group on $\left[n\right]$. Our first main result is that, if the functor $\left[n\right]↦{X}_{n}$ is “finitely generated” there is a finite sequence of integers ${m}_{i}$ and a finite sequence of subgroups ${H}_{i}$ of ${𝔖}_{{m}_{i}}$ such that, for $n$ sufficiently large, ${X}_{n}\cong {⨆}_{i}{𝔖}_{n}/\left({H}_{i}×{𝔖}_{n-{m}_{i}}\right)$ as a set with ${𝔖}_{n}$ action. Our second main result is that, if $\left[n\right]↦{X}_{n}$ and $\left[n\right]↦{Y}_{n}$ are two such finitely generated functors and ${R}_{n}\subset {X}_{n}×{Y}_{n}$ is an FI–invariant family of relations, then the $\left(0,1\right)$ matrices encoding the relation ${R}_{n}$, when written in an appropriate basis, vary polynomially with $n$. In particular, if ${R}_{n}$ is an FI–invariant family of relations from ${X}_{n}$ to itself, then the eigenvalues of this matrix are algebraic functions of $n$. As an application of this theorem we provide a proof of a result about eigenvalues of adjacency matrices claimed by the first and last author. This result recovers, for instance, that the adjacency matrices of the Kneser graphs have eigenvalues which are algebraic functions of $n$, while also expanding this result to a larger family of graphs.

Revised: 2020-02-10
Accepted: 2020-05-06
Published online: 2020-10-12
DOI: https://doi.org/10.5802/alco.128
Classification: 05E18,  18A25,  05C25,  05C75
Keywords: FI-modules, Representation Stability, Kneser graphs.
@article{ALCO_2020__3_5_1079_0,
author = {Ramos, Eric and Speyer, David and White, Graham},
title = {FI--sets with relations},
journal = {Algebraic Combinatorics},
pages = {1079--1098},
publisher = {MathOA foundation},
volume = {3},
number = {5},
year = {2020},
doi = {10.5802/alco.128},
language = {en},
url = {alco.centre-mersenne.org/item/ALCO_2020__3_5_1079_0/}
}
Ramos, Eric; Speyer, David; White, Graham. FI–sets with relations. Algebraic Combinatorics, Volume 3 (2020) no. 5, pp. 1079-1098. doi : 10.5802/alco.128. https://alco.centre-mersenne.org/item/ALCO_2020__3_5_1079_0/

 Brouwer, Andries E.; Cohen, Arjeh M.; Neumaier, Arnold Distance-regular graphs, Springer-Verlag, 1989 | Zbl 0747.05073

 Church, Thomas; Ellenberg, Jordan S.; Farb, Benson FI-modules and stability for representations of symmetric groups, Duke Math. J., Volume 164 (2015) no. 9, pp. 1833-1910 | Article | MR 3357185 | Zbl 1339.55004

 Church, Thomas; Ellenberg, Jordan S.; Farb, Benson; Nagpal, Rohit FI-modules over Noetherian rings, Geom. Topol., Volume 18 (2014) no. 5, pp. 2951-2984 | Article | MR 3285226 | Zbl 1344.20016

 Church, Thomas; Farb, Benson Representation theory and homological stability, Adv. Math., Volume 245 (2013), pp. 250-314 | Article | MR 3084430 | Zbl 1300.20051

 Djament, Aurélien Des propriétés de finitude des foncteurs polynomiaux, Fund. Math., Volume 233 (2016) no. 3, pp. 197-256 | Article | MR 3480119 | Zbl 1353.18001

 Djament, Aurélien; Vespa, Christine Foncteurs faiblement polynomiaux, Int. Math. Res. Not. IMRN (2019) no. 2, pp. 321-391 | Article | MR 3903561 | Zbl 1433.18003

 Gadish, Nir Representation stability for families of linear subspace arrangements, Adv. Math., Volume 322 (2017), pp. 341-377 | Article | MR 3720801 | Zbl 1377.14012

 Godsil, Chris; Royle, Gordon F. Algebraic graph theory, Graduate Texts in Mathematics, Volume 207, Springer Science & Business Media, 2001 | MR 1829620 | Zbl 0968.05002

 Nagpal, Rohit FI-modules and the cohomology of modular representations of symmetric groups (2015) (https://arxiv.org/abs/1505.04294) | MR 3358218

 Putman, Andrew Stability in the homology of congruence subgroups, Invent. Math., Volume 202 (2015) no. 3, pp. 987-1027 | Article | MR 3425385 | Zbl 1334.20045

 Ramos, Eric Homological invariants of FI-modules and FI${}_{G}$-modules, J. Algebra, Volume 502 (2018), pp. 163-195 | Article | MR 3774889 | Zbl 1426.18004

 Ramos, Eric An application of the theory of FI-algebras to graph configuration spaces, Math. Z., Volume 294 (2020) no. 1-2, pp. 1-15 | Article | MR 4050061 | Zbl 1434.55009

 Ramos, Eric; White, Graham Families of Markov chains with compatible symmetric-group actions (2018) (https://arxiv.org/abs/1810.08475)

 Ramos, Eric; White, Graham Families of nested graphs with compatible symmetric-group actions, Selecta Math. (N.S.), Volume 25 (2019) no. 5, Paper No. 70, 42 pages | Article | MR 4030224 | Zbl 1428.05321

 Sam, Steven V.; Snowden, Andrew GL-equivariant modules over polynomial rings in infinitely many variables, Trans. Amer. Math. Soc., Volume 368 (2016) no. 2, pp. 1097-1158 | Article | MR 3430359 | Zbl 1436.13012

 Snowden, Andrew Syzygies of Segre embeddings and $\Delta$-modules, Duke Math. J., Volume 162 (2013) no. 2, pp. 225-277 | Article | MR 3018955 | Zbl 1279.13024