Recent work of the first author, Neguţ and Rasmussen, and of Oblomkov and Rozansky in the context of Khovanov–Rozansky knot homology produces a family of polynomials in and labeled by integer sequences. These polynomials can be expressed as equivariant Euler characteristics of certain line bundles on flag Hilbert schemes. The -Catalan numbers and their rational analogues are special cases of this construction. In this paper, we give a purely combinatorial treatment of these polynomials and show that in many cases they have nonnegative integer coefficients.
For sequences of length at most 4, we prove that these coefficients enumerate subdiagrams in a certain fixed Young diagram and give an explicit symmetric chain decomposition of the set of such diagrams. This strengthens results of Lee, Li and Loehr for rational -Catalan numbers.
Revised:
Accepted:
Published online:
Keywords: $q,t$-Catalan numbers, symmetric chain decomposition, Khovanov–Rozansky knot homology.
Gorsky, Eugene 1; Hawkes, Graham 1; Schilling, Anne 1; Rainbolt, Julianne 2
@article{ALCO_2020__3_4_855_0, author = {Gorsky, Eugene and Hawkes, Graham and Schilling, Anne and Rainbolt, Julianne}, title = {Generalized $q,t${-Catalan} numbers}, journal = {Algebraic Combinatorics}, pages = {855--886}, publisher = {MathOA foundation}, volume = {3}, number = {4}, year = {2020}, doi = {10.5802/alco.120}, language = {en}, url = {https://alco.centre-mersenne.org/articles/10.5802/alco.120/} }
TY - JOUR AU - Gorsky, Eugene AU - Hawkes, Graham AU - Schilling, Anne AU - Rainbolt, Julianne TI - Generalized $q,t$-Catalan numbers JO - Algebraic Combinatorics PY - 2020 SP - 855 EP - 886 VL - 3 IS - 4 PB - MathOA foundation UR - https://alco.centre-mersenne.org/articles/10.5802/alco.120/ DO - 10.5802/alco.120 LA - en ID - ALCO_2020__3_4_855_0 ER -
%0 Journal Article %A Gorsky, Eugene %A Hawkes, Graham %A Schilling, Anne %A Rainbolt, Julianne %T Generalized $q,t$-Catalan numbers %J Algebraic Combinatorics %D 2020 %P 855-886 %V 3 %N 4 %I MathOA foundation %U https://alco.centre-mersenne.org/articles/10.5802/alco.120/ %R 10.5802/alco.120 %G en %F ALCO_2020__3_4_855_0
Gorsky, Eugene; Hawkes, Graham; Schilling, Anne; Rainbolt, Julianne. Generalized $q,t$-Catalan numbers. Algebraic Combinatorics, Volume 3 (2020) no. 4, pp. 855-886. doi : 10.5802/alco.120. https://alco.centre-mersenne.org/articles/10.5802/alco.120/
[1] Combinatorics of Tesler matrices in the theory of parking functions and diagonal harmonics, J. Comb., Volume 3 (2012) no. 3, pp. 451-494 | DOI | MR | Zbl
[2] Signature Catalan combinatorics, J. Comb., Volume 10 (2019) no. 4, pp. 725-773 | DOI | MR | Zbl
[3] On the computation of torus link homology, Compos. Math., Volume 155 (2019) no. 1, pp. 164-205 | DOI | MR | Zbl
[4] A remarkable -Catalan sequence and -Lagrange inversion, J. Algebraic Combin., Volume 5 (1996) no. 3, pp. 191-244 | DOI | MR | Zbl
[5] Constant term methods in the theory of Tesler matrices and Macdonald polynomial operators, Ann. Comb., Volume 18 (2014) no. 1, pp. 83-109 | DOI | MR | Zbl
[6] Rational parking functions and LLT polynomials, J. Combin. Theory Ser. A, Volume 140 (2016), pp. 123-140 | DOI | MR | Zbl
[7] Affine permutations and rational slope parking functions, Trans. Amer. Math. Soc., Volume 368 (2016) no. 12, pp. 8403-8445 | DOI | MR | Zbl
[8] Rational Dyck paths in the non relatively prime case, Electron. J. Combin., Volume 24 (2017) no. 3, Paper no. Paper 3.61, 29 pages | MR | Zbl
[9] Refined knot invariants and Hilbert schemes, J. Math. Pures Appl. (9), Volume 104 (2015) no. 3, pp. 403-435 | DOI | MR | Zbl
[10] Flag Hilbert schemes, colored projectors and Khovanov–Rozansky homology (2016) (preprint https://arxiv.org/abs/1608.07308)
[11] Torus knots and the rational DAHA, Duke Math. J., Volume 163 (2014) no. 14, pp. 2709-2794 | DOI | MR | Zbl
[12] Compactified Jacobians and -Catalan numbers, I, J. Combin. Theory Ser. A, Volume 120 (2013) no. 1, pp. 49-63 | DOI | MR | Zbl
[13] Compactified Jacobians and -Catalan numbers, II, J. Algebraic Combin., Volume 39 (2014) no. 1, pp. 153-186 | DOI | MR | Zbl
[14] A combinatorial formula for the character of the diagonal coinvariants, Duke Math. J., Volume 126 (2005) no. 2, pp. 195-232 | DOI | MR | Zbl
[15] The ,-Catalan numbers and the space of diagonal harmonics, University Lecture Series, 41, American Mathematical Society, Providence, RI, 2008, viii+167 pages (With an appendix on the combinatorics of Macdonald polynomials) | MR | Zbl
[16] A polynomial expression for the Hilbert series of the quotient ring of diagonal coinvariants, Adv. Math., Volume 227 (2011) no. 5, pp. 2092-2106 | DOI | MR | Zbl
[17] Khovanov-Rozansky homology and higher Catalan sequences (2017) (preprint https://arxiv.org/abs/1704.01562)
[18] The crystal base and Littelmann’s refined Demazure character formula, Duke Math. J., Volume 71 (1993) no. 3, pp. 839-858 | DOI | MR | Zbl
[19] Combinatorics of certain higher -Catalan polynomials: chains, joint symmetry, and the Garsia-Haiman formula, J. Algebraic Combin., Volume 39 (2014) no. 4, pp. 749-781 | DOI | MR | Zbl
[20] A combinatorial approach to the symmetry of -Catalan numbers, SIAM J. Discrete Math., Volume 32 (2018) no. 1, pp. 191-232 | DOI | MR | Zbl
[21] Crystal graphs and Young tableaux, J. Algebra, Volume 175 (1995) no. 1, pp. 65-87 | DOI | MR | Zbl
[22] Toric braids and -parking functions (2016) (preprint https://arxiv.org/abs/1604.07456)
[23] Homology of torus knots (2017) (preprint https://arxiv.org/abs/1704.07630)
[24] HOMFLYPT homology of Coxeter links (2017) (preprint https://arxiv.org/abs/1706.00124)
[25] The elliptic Hall algebra and the -theory of the Hilbert scheme of , Duke Math. J., Volume 162 (2013) no. 2, pp. 279-366 | DOI | MR | Zbl
Cited by Sources: