Generalized q,t-Catalan numbers
Algebraic Combinatorics, Volume 3 (2020) no. 4, pp. 855-886.

Recent work of the first author, Neguţ and Rasmussen, and of Oblomkov and Rozansky in the context of Khovanov–Rozansky knot homology produces a family of polynomials in q and t labeled by integer sequences. These polynomials can be expressed as equivariant Euler characteristics of certain line bundles on flag Hilbert schemes. The q,t-Catalan numbers and their rational analogues are special cases of this construction. In this paper, we give a purely combinatorial treatment of these polynomials and show that in many cases they have nonnegative integer coefficients.

For sequences of length at most 4, we prove that these coefficients enumerate subdiagrams in a certain fixed Young diagram and give an explicit symmetric chain decomposition of the set of such diagrams. This strengthens results of Lee, Li and Loehr for (4,n) rational q,t-Catalan numbers.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/alco.120
Classification: 05A18,  05A19,  05E05
Keywords: q,t-Catalan numbers, symmetric chain decomposition, Khovanov–Rozansky knot homology.
Gorsky, Eugene 1; Hawkes, Graham 1; Schilling, Anne 1; Rainbolt, Julianne 2

1 Department of Mathematics University of California One Shields Avenue Davis, CA 95616-8633, U.S.A.
2 Department of Mathematics and Statistics Saint Louis University 220 North Grand Blvd. Saint Louis, MO 63103, U.S.A.
@article{ALCO_2020__3_4_855_0,
     author = {Gorsky, Eugene and Hawkes, Graham and Schilling, Anne and Rainbolt, Julianne},
     title = {Generalized $q,t${-Catalan} numbers},
     journal = {Algebraic Combinatorics},
     pages = {855--886},
     publisher = {MathOA foundation},
     volume = {3},
     number = {4},
     year = {2020},
     doi = {10.5802/alco.120},
     language = {en},
     url = {https://alco.centre-mersenne.org/articles/10.5802/alco.120/}
}
TY  - JOUR
TI  - Generalized $q,t$-Catalan numbers
JO  - Algebraic Combinatorics
PY  - 2020
DA  - 2020///
SP  - 855
EP  - 886
VL  - 3
IS  - 4
PB  - MathOA foundation
UR  - https://alco.centre-mersenne.org/articles/10.5802/alco.120/
UR  - https://doi.org/10.5802/alco.120
DO  - 10.5802/alco.120
LA  - en
ID  - ALCO_2020__3_4_855_0
ER  - 
%0 Journal Article
%T Generalized $q,t$-Catalan numbers
%J Algebraic Combinatorics
%D 2020
%P 855-886
%V 3
%N 4
%I MathOA foundation
%U https://doi.org/10.5802/alco.120
%R 10.5802/alco.120
%G en
%F ALCO_2020__3_4_855_0
Gorsky, Eugene; Hawkes, Graham; Schilling, Anne; Rainbolt, Julianne. Generalized $q,t$-Catalan numbers. Algebraic Combinatorics, Volume 3 (2020) no. 4, pp. 855-886. doi : 10.5802/alco.120. https://alco.centre-mersenne.org/articles/10.5802/alco.120/

[1] Armstrong, Drew; Garsia, Adriano; Haglund, James; Rhoades, Brendon; Sagan, Bruce Combinatorics of Tesler matrices in the theory of parking functions and diagonal harmonics, J. Comb., Volume 3 (2012) no. 3, pp. 451-494 | Article | MR: 3029443 | Zbl: 1291.05203

[2] Ceballos, Cesar; González D’León, Rafael S. Signature Catalan combinatorics, J. Comb., Volume 10 (2019) no. 4, pp. 725-773 | Article | MR: 3983746 | Zbl: 1417.05003

[3] Elias, Ben; Hogancamp, Matthew On the computation of torus link homology, Compos. Math., Volume 155 (2019) no. 1, pp. 164-205 | Article | MR: 3880028 | Zbl: 07089331

[4] Garsia, A. M.; Haiman, M. A remarkable q,t-Catalan sequence and q-Lagrange inversion, J. Algebraic Combin., Volume 5 (1996) no. 3, pp. 191-244 | Article | MR: 1394305 | Zbl: 0853.05008

[5] Garsia, Adriano M.; Haglund, James; Xin, Guoce Constant term methods in the theory of Tesler matrices and Macdonald polynomial operators, Ann. Comb., Volume 18 (2014) no. 1, pp. 83-109 | Article | MR: 3167606 | Zbl: 1297.05240

[6] Gorsky, Eugene; Mazin, Mikhail Rational parking functions and LLT polynomials, J. Combin. Theory Ser. A, Volume 140 (2016), pp. 123-140 | Article | MR: 3461138 | Zbl: 1331.05227

[7] Gorsky, Eugene; Mazin, Mikhail; Vazirani, Monica Affine permutations and rational slope parking functions, Trans. Amer. Math. Soc., Volume 368 (2016) no. 12, pp. 8403-8445 | Article | MR: 3551576 | Zbl: 1346.05299

[8] Gorsky, Eugene; Mazin, Mikhail; Vazirani, Monica Rational Dyck paths in the non relatively prime case, Electron. J. Combin., Volume 24 (2017) no. 3, Paper no. Paper 3.61, 29 pages | MR: 3711103 | Zbl: 1372.05017

[9] Gorsky, Eugene; Neguţ, Andrei Refined knot invariants and Hilbert schemes, J. Math. Pures Appl. (9), Volume 104 (2015) no. 3, pp. 403-435 | Article | MR: 3383172 | Zbl: 1349.14012

[10] Gorsky, Eugene; Neguţ, Andrei; Rasmussen, Jacob Flag Hilbert schemes, colored projectors and Khovanov–Rozansky homology (2016) (preprint https://arxiv.org/abs/1608.07308)

[11] Gorsky, Eugene; Oblomkov, Alexei; Rasmussen, Jacob; Shende, Vivek Torus knots and the rational DAHA, Duke Math. J., Volume 163 (2014) no. 14, pp. 2709-2794 | Article | MR: 3273582 | Zbl: 1318.57010

[12] Gorsky, Evgeny; Mazin, Mikhail Compactified Jacobians and q,t-Catalan numbers, I, J. Combin. Theory Ser. A, Volume 120 (2013) no. 1, pp. 49-63 | Article | MR: 2971696 | Zbl: 1252.05009

[13] Gorsky, Evgeny; Mazin, Mikhail Compactified Jacobians and q,t-Catalan numbers, II, J. Algebraic Combin., Volume 39 (2014) no. 1, pp. 153-186 | Article | MR: 3144397 | Zbl: 1284.05019

[14] Haglund, J.; Haiman, M.; Loehr, N.; Remmel, J. B.; Ulyanov, A. A combinatorial formula for the character of the diagonal coinvariants, Duke Math. J., Volume 126 (2005) no. 2, pp. 195-232 | Article | MR: 2115257 | Zbl: 1069.05077

[15] Haglund, James The q,t-Catalan numbers and the space of diagonal harmonics, University Lecture Series, 41, American Mathematical Society, Providence, RI, 2008, viii+167 pages (With an appendix on the combinatorics of Macdonald polynomials) | MR: 2371044 | Zbl: 1142.05074

[16] Haglund, James A polynomial expression for the Hilbert series of the quotient ring of diagonal coinvariants, Adv. Math., Volume 227 (2011) no. 5, pp. 2092-2106 | Article | MR: 2803796 | Zbl: 1258.13020

[17] Hogancamp, Matthew Khovanov-Rozansky homology and higher Catalan sequences (2017) (preprint https://arxiv.org/abs/1704.01562)

[18] Kashiwara, Masaki The crystal base and Littelmann’s refined Demazure character formula, Duke Math. J., Volume 71 (1993) no. 3, pp. 839-858 | Article | MR: 1240605 | Zbl: 0794.17008

[19] Lee, Kyungyong; Li, Li; Loehr, Nicholas A. Combinatorics of certain higher q,t-Catalan polynomials: chains, joint symmetry, and the Garsia-Haiman formula, J. Algebraic Combin., Volume 39 (2014) no. 4, pp. 749-781 | Article | MR: 3199025 | Zbl: 1293.05007

[20] Lee, Kyungyong; Li, Li; Loehr, Nicholas A. A combinatorial approach to the symmetry of q,t-Catalan numbers, SIAM J. Discrete Math., Volume 32 (2018) no. 1, pp. 191-232 | Article | MR: 3747460 | Zbl: 1386.05013

[21] Littelmann, Peter Crystal graphs and Young tableaux, J. Algebra, Volume 175 (1995) no. 1, pp. 65-87 | Article | MR: 1338967 | Zbl: 0831.17004

[22] Mellit, Anton Toric braids and (m,n)-parking functions (2016) (preprint https://arxiv.org/abs/1604.07456)

[23] Mellit, Anton Homology of torus knots (2017) (preprint https://arxiv.org/abs/1704.07630)

[24] Oblomkov, Alexei; Rozansky, Lev HOMFLYPT homology of Coxeter links (2017) (preprint https://arxiv.org/abs/1706.00124)

[25] Schiffmann, Olivier; Vasserot, Eric The elliptic Hall algebra and the K-theory of the Hilbert scheme of 𝔸 2 , Duke Math. J., Volume 162 (2013) no. 2, pp. 279-366 | Article | MR: 3018956 | Zbl: 1290.19001

Cited by Sources: