We study the combinatorial properties of vexillary signed permutations, which are signed analogues of the vexillary permutations first considered by Lascoux and Schützenberger. We give several equivalent characterizations of vexillary signed permutations, including descriptions in terms of essential sets and pattern avoidance, and we relate them to the vexillary elements introduced by Billey and Lam.
Revised:
Accepted:
Published online:
Keywords: Signed permutation, vexillary permutation, degeneracy locus, essential set.
Anderson, David 1; Fulton, William 2
@article{ALCO_2020__3_5_1041_0, author = {Anderson, David and Fulton, William}, title = {Vexillary signed permutations revisited}, journal = {Algebraic Combinatorics}, pages = {1041--1057}, publisher = {MathOA foundation}, volume = {3}, number = {5}, year = {2020}, doi = {10.5802/alco.122}, language = {en}, url = {https://alco.centre-mersenne.org/articles/10.5802/alco.122/} }
TY - JOUR AU - Anderson, David AU - Fulton, William TI - Vexillary signed permutations revisited JO - Algebraic Combinatorics PY - 2020 SP - 1041 EP - 1057 VL - 3 IS - 5 PB - MathOA foundation UR - https://alco.centre-mersenne.org/articles/10.5802/alco.122/ DO - 10.5802/alco.122 LA - en ID - ALCO_2020__3_5_1041_0 ER -
Anderson, David; Fulton, William. Vexillary signed permutations revisited. Algebraic Combinatorics, Volume 3 (2020) no. 5, pp. 1041-1057. doi : 10.5802/alco.122. https://alco.centre-mersenne.org/articles/10.5802/alco.122/
[1] Diagrams and essential sets for signed permutations, Electron. J. Combin., Volume 25 (2018) no. 3, Paper no. 3.46, 23 pages | MR | Zbl
[2] Degeneracy loci, Pfaffians, and vexillary signed permutations in types B, C, and D (2012) (https://arxiv.org/abs/1210.2066)
[3] Chern class formulas for classical-type degeneracy loci, Compos. Math., Volume 154 (2018) no. 8, pp. 1746-1774 | DOI | MR | Zbl
[4] Transition equations for isotropic flag manifolds, Discrete Math., Volume 193 (1998) no. 1-3, pp. 69-84 Selected papers in honor of Adriano Garsia (Taormina, 1994) | DOI | MR | Zbl
[5] Schubert polynomials for the classical groups, J. Amer. Math. Soc., Volume 8 (1995) no. 2, pp. 443-482 | DOI | MR | Zbl
[6] Vexillary elements in the hyperoctahedral group, J. Algebraic Combin., Volume 8 (1998) no. 2, pp. 139-152 | DOI | MR | Zbl
[7] Combinatorics of Coxeter groups, Graduate Texts in Mathematics, 231, Springer, New York, 2005, xiv+363 pages | MR | Zbl
[8] Enumerating -invariant permutations with no long decreasing subsequences, Ann. Comb., Volume 14 (2010) no. 1, pp. 85-101 | DOI | MR | Zbl
[9] Combinatorics of Fulton’s essential set, Duke Math. J., Volume 85 (1996) no. 1, pp. 61-76 | DOI | MR | Zbl
[10] Combinatorial -analogues of Schubert polynomials, Trans. Amer. Math. Soc., Volume 348 (1996) no. 9, pp. 3591-3620 | DOI | MR | Zbl
[11] Flags, Schubert polynomials, degeneracy loci, and determinantal formulas, Duke Math. J., Volume 65 (1992) no. 3, pp. 381-420 | DOI | MR | Zbl
[12] Schubert varieties and degeneracy loci, Lecture Notes in Mathematics, 1689, Springer-Verlag, Berlin, 1998, xii+148 pages (Appendix J by the authors in collaboration with I. Ciocan-Fontanine) | DOI | MR | Zbl
[13] Double Schubert polynomials for the classical groups, Adv. Math., Volume 226 (2011) no. 1, pp. 840-886 | DOI | MR | Zbl
[14] On Lagrange and symmetric degeneracy loci (2000) (Isaac Newton Institute for Mathematical Sciences Preprint Series)
[15] Notes on Schubert, Grothendieck and key polynomials, SIGMA Symmetry Integrability Geom. Methods Appl., Volume 12 (2016), Paper no. Paper No. 034, 56 pages | DOI | MR | Zbl
[16] Theta-vexillary signed permutations, Electron. J. Combin., Volume 25 (2018) no. 4, Paper no. Paper 4.53, 30 pages | MR | Zbl
[17] Polynômes de Schubert, C. R. Acad. Sci. Paris Sér. I Math., Volume 294 (1982) no. 13, pp. 447-450 | MR | Zbl
[18] Schubert polynomials and the Littlewood–Richardson rule, Lett. Math. Phys., Volume 10 (1985) no. 2-3, pp. 111-124 | DOI | MR | Zbl
[19] Generating trees and the Catalan and Schröder numbers, Discrete Math., Volume 146 (1995) no. 1-3, pp. 247-262 | DOI | MR | Zbl
Cited by Sources: