We introduce semi-infinite Young tableaux, and show that these tableaux give a combinatorial model for the crystal basis of a level-zero extremal weight module over the quantized universal enveloping algebra of untwisted affine type . The definition and characterization of these tableaux are based on standard monomial theory for semi-infinite Lakshmibai–Seshadri paths and a tableau criterion for the semi-infinite Bruhat order on affine Weyl groups of type , which are also proved in this paper.
Revised:
Accepted:
Published online:
Ishii, Motohiro 1
@article{ALCO_2020__3_5_1141_0, author = {Ishii, Motohiro}, title = {Semi-infinite {Young} tableaux and standard monomial theory for semi-infinite {Lakshmibai{\textendash}Seshadri} paths}, journal = {Algebraic Combinatorics}, pages = {1141--1163}, publisher = {MathOA foundation}, volume = {3}, number = {5}, year = {2020}, doi = {10.5802/alco.130}, language = {en}, url = {https://alco.centre-mersenne.org/articles/10.5802/alco.130/} }
TY - JOUR AU - Ishii, Motohiro TI - Semi-infinite Young tableaux and standard monomial theory for semi-infinite Lakshmibai–Seshadri paths JO - Algebraic Combinatorics PY - 2020 SP - 1141 EP - 1163 VL - 3 IS - 5 PB - MathOA foundation UR - https://alco.centre-mersenne.org/articles/10.5802/alco.130/ DO - 10.5802/alco.130 LA - en ID - ALCO_2020__3_5_1141_0 ER -
%0 Journal Article %A Ishii, Motohiro %T Semi-infinite Young tableaux and standard monomial theory for semi-infinite Lakshmibai–Seshadri paths %J Algebraic Combinatorics %D 2020 %P 1141-1163 %V 3 %N 5 %I MathOA foundation %U https://alco.centre-mersenne.org/articles/10.5802/alco.130/ %R 10.5802/alco.130 %G en %F ALCO_2020__3_5_1141_0
Ishii, Motohiro. Semi-infinite Young tableaux and standard monomial theory for semi-infinite Lakshmibai–Seshadri paths. Algebraic Combinatorics, Volume 3 (2020) no. 5, pp. 1141-1163. doi : 10.5802/alco.130. https://alco.centre-mersenne.org/articles/10.5802/alco.130/
[1] Finite-dimensional representations of quantum affine algebras, Publ. Res. Inst. Math. Sci., Volume 33 (1997) no. 5, pp. 839-867 | DOI | MR | Zbl
[2] Crystal bases and two-sided cells of quantum affine algebras, Duke Math. J., Volume 123 (2004) no. 2, pp. 335-402 | MR | Zbl
[3] Combinatorics of Coxeter Groups, Graduate Texts in Mathematics, 231, Springer, New York, 2005 | MR | Zbl
[4] Young Tableaux. With applications to representation theory and geometry, London Mathematical Society Student Texts, 35, Cambridge University Press, Cambridge, 1997 | MR | Zbl
[5] Path model for representations of generalized Kac–Moody algebras, J. Algebra, Volume 379 (2013), pp. 277-300 | DOI | MR | Zbl
[6] Semi-infinite Lakshmibai–Seshadri path model for level-zero extremal weight modules over quantum affine algebras, Adv. Math., Volume 290 (2016), pp. 967-1009 | DOI | MR | Zbl
[7] Quantum groups and their primitive ideals, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], 29, Springer-Verlag, Berlin, 1995 | DOI | MR | Zbl
[8] A Littelmann path model for crystals of generalized Kac–Moody algebras, Adv. Math., Volume 221 (2009) no. 6, pp. 2019-2058 | DOI | MR | Zbl
[9] Infinite Dimensional Lie Algebras, Results in Mathematics and Related Areas (3), Cambridge University Press, Cambridge, 1990 (3rd edition) | DOI | Zbl
[10] Perfect crystals of quantum affine Lie algebras, Duke Math. J., Volume 68 (1992) no. 3, pp. 499-607 | DOI | MR | Zbl
[11] Crystal bases of modified quantized enveloping algebra, Duke Math. J., Volume 73 (1994) no. 2, pp. 383-413 | DOI | MR | Zbl
[12] On crystal bases, Representations of groups (Banff, AB, 1994) (CMS Conf. Proc.), Volume 16, Amer. Math. Soc., Providence, RI, 1995, pp. 155-197 | MR | Zbl
[13] Similarity of crystal bases, Lie algebras and their representations (Seoul, 1995) (Contemp. Math.), Volume 194, Amer. Math. Soc., Providence, RI, 1996, pp. 177-186 | DOI | MR | Zbl
[14] On level-zero representations of quantized affine algebras, Duke Math. J., Volume 112 (2002) no. 1, pp. 117-175 | DOI | MR | Zbl
[15] Crystal graphs for representations of the -analogue of classical Lie algebras, J. Algebra, Volume 165 (1994) no. 2, pp. 295-345 | DOI | MR | Zbl
[16] Equivariant -theory of semi-infinite flag manifolds and Pieri–Chevalley formula (2017) (https://arxiv.org/abs/1702.02408)
[17] Crystal graphs and the combinatorics of Young tableaux, Handbook of Algebra, Volume 6, Elsevier/North-Holland, Amsterdam, 2009, pp. 473-504 | DOI | MR | Zbl
[18] Quantum cohomology of and homology of affine Grassmannian, Acta Math., Volume 204 (2010) no. 1, pp. 49-90 | DOI | MR | Zbl
[19] A uniform model for Kirillov–Reshetikhin crystals I: Lifting the parabolic quantum Bruhat graph, Int. Math. Res. Not. IMRN (2015) no. 7, pp. 1848-1901 | DOI | MR | Zbl
[20] Quantum Lakshmibai–Seshadri paths and root operators, Schubert calculus—Osaka 2012 (Adv. Stud. Pure Math.), Volume 71, Math. Soc. Japan, Tokyo, 2016, pp. 267-294 | DOI | MR | Zbl
[21] A Littlewood–Richardson rule for symmetrizable Kac–Moody algebras, Invent. Math., Volume 116 (1994) no. 1-3, pp. 329-346 | DOI | MR | Zbl
[22] Paths and root operators in representation theory, Ann. of Math. (2), Volume 142 (1995) no. 3, pp. 499-525 | DOI | MR | Zbl
[23] A plactic algebra for semisimple Lie algebras, Adv. Math., Volume 124 (1996) no. 2, pp. 312-331 | DOI | MR | Zbl
[24] Extremal weight modules of quantum affine algebras, Representation theory of algebraic groups and quantum groups (Adv. Stud. Pure Math.), Volume 40, Math. Soc. Japan, Tokyo, 2004, pp. 343-369 | DOI | MR | Zbl
[25] Quantum Cohomology of (1997) (Lect. Notes, Massachusetts Institute of Technology, Cambridge, MA)
[26] Affine type A crystal structure on tensor products of rectangles, Demazure characters, and nilpotent varieties, J. Algebraic Combin., Volume 15 (2002) no. 2, pp. 151-187 | DOI | MR | Zbl
Cited by Sources: