Noncommutative LR coefficients and crystal reflection operators
Algebraic Combinatorics, Volume 4 (2021) no. 1, pp. 145-162.

We relate noncommutative Littlewood–Richardson coefficients of Bessenrodt–Luoto–van Willigenburg to classical Littlewood–Richardson coefficients via crystal reflection operators. A key role is played by the combinatorics of frank words.

Received:
Revised:
Accepted:
Published online:
DOI: https://doi.org/10.5802/alco.155
Classification: 05E05,  05A05,  05E10,  20C30
Keywords: Crystal operator, Littlewood–Richardson coefficient, noncommutative symmetric function, symmetric function, Schur function.
@article{ALCO_2021__4_1_145_0,
     author = {Richmond, Edward and Tewari, Vasu},
     title = {Noncommutative LR coefficients and crystal reflection operators},
     journal = {Algebraic Combinatorics},
     pages = {145--162},
     publisher = {MathOA foundation},
     volume = {4},
     number = {1},
     year = {2021},
     doi = {10.5802/alco.155},
     language = {en},
     url = {https://alco.centre-mersenne.org/articles/10.5802/alco.155/}
}
Richmond, Edward; Tewari, Vasu. Noncommutative LR coefficients and crystal reflection operators. Algebraic Combinatorics, Volume 4 (2021) no. 1, pp. 145-162. doi : 10.5802/alco.155. https://alco.centre-mersenne.org/articles/10.5802/alco.155/

[1] Alexandersson, Per Non-symmetric Macdonald polynomials and Demazure–Lusztig operators (2016) (https://arxiv.org/abs/1602.05153) | MR 4063906

[2] Allen, Edward E.; Hallam, Joshua; Mason, Sarah Dual immaculate quasisymmetric functions expand positively into Young quasisymmetric Schur functions, J. Combin. Theory Ser. A, Volume 157 (2018), pp. 70-108 | Article | MR 3780408 | Zbl 1385.05072

[3] Assaf, Sami; Searles, Dominic Kohnert tableaux and a lifting of quasi-Schur functions, J. Combin. Theory Ser. A, Volume 156 (2018), pp. 85-118 | Article | MR 3762104 | Zbl 1381.05084

[4] Berg, Chris; Bergeron, Nantel; Saliola, Franco; Serrano, Luis; Zabrocki, Mike A lift of the Schur and Hall-Littlewood bases to non-commutative symmetric functions, Canad. J. Math., Volume 66 (2014) no. 3, pp. 525-565 | Article | MR 3194160 | Zbl 1291.05206

[5] Bessenrodt, Christine; Luoto, Kurt; van Willigenburg, Stephanie Skew quasisymmetric Schur functions and noncommutative Schur functions, Adv. Math., Volume 226 (2011) no. 5, pp. 4492-4532 | Article | MR 2770457 | Zbl 1214.05170

[6] Bessenrodt, Christine; Tewari, Vasu; van Willigenburg, Stephanie Littlewood–Richardson rules for symmetric skew quasisymmetric Schur functions, J. Combin. Theory Ser. A, Volume 137 (2016), pp. 179-206 | Article | MR 3403520 | Zbl 1325.05178

[7] Buch, Anders Skovsted The saturation conjecture (after A. Knutson and T. Tao), Enseign. Math. (2), Volume 46 (2000) no. 1-2, pp. 43-60 (With an appendix by William Fulton) | MR 1769536 | Zbl 0979.20041

[8] Bump, Daniel; Schilling, Anne Crystal bases. Representations and combinatorics, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2017, xii+279 pages | Article | MR 3642318 | Zbl 1440.17001

[9] Fomin, Sergey Schur operators and Knuth correspondences, J. Combin. Theory Ser. A, Volume 72 (1995) no. 2, pp. 277-292 | Article | MR 1357774 | Zbl 0839.05093

[10] Fomin, Sergey; Greene, Curtis A Littlewood–Richardson miscellany, European J. Combin., Volume 14 (1993) no. 3, pp. 191-212 | Article | MR 1215331 | Zbl 0796.05091

[11] Fulton, William Young tableaux. With applications to representation theory and geometry, London Mathematical Society Student Texts, 35, Cambridge University Press, Cambridge, 1997, x+260 pages | MR 1464693 | Zbl 0878.14034

[12] Gelʼfand, Israel M.; Krob, Daniel; Lascoux, Alain; Leclerc, Bernard; Retakh, Vladimir S.; Thibon, Jean-Yves Noncommutative symmetric functions, Adv. Math., Volume 112 (1995) no. 2, pp. 218-348 | Article | MR 1327096 | Zbl 0831.05063

[13] Gessel, Ira M. Multipartite P-partitions and inner products of skew Schur functions, Combinatorics and algebra (Boulder, Colo., 1983) (Contemp. Math.), Volume 34, Amer. Math. Soc., Providence, RI, 1984, pp. 289-317 | Article | MR 777705 | Zbl 0562.05007

[14] Haglund, James; Luoto, Kurt; Mason, Sarah; van Willigenburg, Stephanie Quasisymmetric Schur functions, J. Combin. Theory Ser. A, Volume 118 (2011) no. 2, pp. 463-490 | Article | MR 2739497

[15] Knutson, Allen; Tao, Terence The honeycomb model of GL n (C) tensor products. I. Proof of the saturation conjecture, J. Amer. Math. Soc., Volume 12 (1999) no. 4, pp. 1055-1090 | Article | MR 1671451 | Zbl 0944.05097

[16] Lam, Thomas; Lauve, Aaron; Sottile, Frank Skew Littlewood–Richardson rules from Hopf algebras, Int. Math. Res. Not. IMRN (2011) no. 6, pp. 1205-1219 | Article | MR 2806503 | Zbl 1243.16035

[17] Lascoux, Alain; Schützenberger, Marcel-Paul Le monoïde plaxique, Noncommutative structures in algebra and geometric combinatorics (Naples, 1978) (Quad. “Ricerca Sci.”), Volume 109, CNR, Rome, 1981, pp. 129-156 | MR 646486 | Zbl 0517.20036

[18] Lascoux, Alain; Schützenberger, Marcel-Paul Keys & standard bases, Invariant theory and tableaux (Minneapolis, MN, 1988) (IMA Vol. Math. Appl.), Volume 19, Springer, New York, 1990, pp. 125-144 | MR 1035493 | Zbl 0815.20013

[19] Littlewood, Dudley E.; Richardson, Archibald R. Group characters and algebra, Phil. Trans. A, Volume 233 (1934), pp. 99-141 | Zbl 60.0896.01

[20] Liu, Ricky Ini An algorithmic Littlewood–Richardson rule, J. Algebraic Combin., Volume 31 (2010) no. 2, pp. 253-266 | Article | MR 2592078 | Zbl 1226.05259

[21] Lothaire, M. Algebraic combinatorics on words, Encyclopedia of Mathematics and its Applications, 90, Cambridge University Press, Cambridge, 2002, xiv+504 pages | Article | MR 1905123 | Zbl 1001.68093

[22] Luoto, Kurt; Mykytiuk, Stefan; van Willigenburg, Stephanie An introduction to quasisymmetric Schur functions. Hopf algebras, quasisymmetric functions, and Young composition tableaux, SpringerBriefs in Mathematics, Springer, New York, 2013, xiv+89 pages | Article | MR 3097867 | Zbl 1277.16027

[23] Malvenuto, Claudia; Reutenauer, Christophe Duality between quasi-symmetric functions and the Solomon descent algebra, J. Algebra, Volume 177 (1995) no. 3, pp. 967-982 | Article | MR 1358493 | Zbl 0838.05100

[24] Mason, Sarah An explicit construction of type A Demazure atoms, J. Algebraic Combin., Volume 29 (2009) no. 3, pp. 295-313 | Article | MR 2496309 | Zbl 1210.05175

[25] Monical, Cara; Pechenik, Oliver; Searles, Dominic K-theoretic polynomials, Sém. Lothar. Combin., Volume 82B (2020), Paper no. 10, 12 pages | MR 4098231 | Zbl 07181206

[26] Pak, Igor; Vallejo, Ernesto Combinatorics and geometry of Littlewood–Richardson cones, European J. Combin., Volume 26 (2005) no. 6, pp. 995-1008 | Article | MR 2143205 | Zbl 1063.05133

[27] Reiner, Victor; Shimozono, Mark Key polynomials and a flagged Littlewood–Richardson rule, J. Combin. Theory Ser. A, Volume 70 (1995) no. 1, pp. 107-143 | Article | MR 1324004 | Zbl 0819.05058

[28] Reiner, Victor; Shimozono, Mark Plactification, J. Algebraic Combin., Volume 4 (1995) no. 4, pp. 331-351 | Article | MR 1346889 | Zbl 0922.05049

[29] Remmel, Jeffrey B.; Shimozono, Mark A simple proof of the Littlewood–Richardson rule and applications, Discrete Math., Volume 193 (1998) no. 1-3, pp. 257-266 Selected papers in honor of Adriano Garsia (Taormina, 1994) | Article | MR 1661373 | Zbl 1061.05507

[30] Sagan, Bruce E. The symmetric group. Representations, combinatorial algorithms, and symmetric functions, Graduate Texts in Mathematics, 203, Springer-Verlag, New York, 2001, xvi+238 pages | Article | MR 1824028 | Zbl 0964.05070

[31] Schützenberger, Marcel-Paul La correspondance de Robinson, Combinatoire et représentation du groupe symétrique (Actes Table Ronde CNRS, Univ. Louis-Pasteur Strasbourg, Strasbourg, 1976) (Lecture Notes in Math.), Volume 579, Springer-Verlag, Berlin-New York, 1977, pp. 59-113 | MR 498826 | Zbl 0398.05011

[32] Searles, Dominic Polynomial bases: positivity and Schur multiplication, Trans. Amer. Math. Soc., Volume 373 (2020) no. 2, pp. 819-847 | Article | MR 4068251 | Zbl 1433.05325

[33] Stanley, Richard P. Enumerative combinatorics. Vol. 2, Cambridge Studies in Advanced Mathematics, 62, Cambridge University Press, Cambridge, 1999, xii+581 pages (With a foreword by Gian-Carlo Rota and appendix 1 by Sergey Fomin) | Article | MR 1676282 | Zbl 0928.05001

[34] Tewari, Vasu Backward jeu de taquin slides for composition tableaux and a noncommutative Pieri rule, Electron. J. Combin., Volume 22 (2015) no. 1, Paper no. 1.42, 50 pages | MR 3336556 | Zbl 1308.05105

[35] Tewari, Vasu A Murnaghan–Nakayama rule for noncommutative Schur functions, European J. Combin., Volume 58 (2016), pp. 118-143 | Article | MR 3530625 | Zbl 1343.05159

[36] Thomas, Glânffrwd P. On Schensted’s construction and the multiplication of Schur functions, Adv. in Math., Volume 30 (1978) no. 1, pp. 8-32 | Article | MR 511739 | Zbl 0408.05004

[37] Vakil, Ravi A geometric Littlewood-Richardson rule, Ann. of Math. (2), Volume 164 (2006) no. 2, pp. 371-421 (Appendix A written with A. Knutson) | Article | MR 2247964 | Zbl 1163.05337

[38] van Leeuwen, Marc A. A. The Littlewood–Richardson rule, and related combinatorics, Interaction of combinatorics and representation theory (MSJ Mem.), Volume 11, Math. Soc. Japan, Tokyo, 2001, pp. 95-145 | Article | MR 1862150 | Zbl 0991.05101